Siberian Mathematical Journal

, Volume 30, Issue 1, pp 16–25 | Cite as

Structure of homogeneous locally compact spaces with intrinsic metric

  • V. N. Berestovskii


Compact Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. D. Aleksandrov, Intrinsic Geometry of Convex Surfaces [in Russian], Gostekhizdat, Moscow-Leningrad (1948).Google Scholar
  2. 2.
    N. Bourbaki, General Topology, Part 1, Hermann, Paris (1966).Google Scholar
  3. 3.
    Busemann, The Geometry of Geodesics, Academic Press, New York (1955).Google Scholar
  4. 4.
    V. N. Berestovskii, “Busemann's homogeneous G-spaces,” Sib. Mat. Zh.,23, No. 2, 3–15 (1982).Google Scholar
  5. 5.
    S. E. Cohn-Vossen, “Existenz kürzester Wege,” Compositio Math.,3, 441–452 (1936).Google Scholar
  6. 6.
    L. S. Pontryagin, Continuous Groups [in Russian], Nauka, Moscow (1973).Google Scholar
  7. 7.
    C. Chevalley, Theory of Lie Groups, I, Princeton Univ. Press (1946).Google Scholar
  8. 8.
    I. Kaplansky, Lie Algebras and Locally Compact Groups, University of Chicago Press (1971).Google Scholar
  9. 9.
    V. M. Glushkov, “Structure of locally bicompact groups and Hilbert's fifth problem,” Usp. Mat. Nauk,12, No. 2, 3–41 (1957).Google Scholar
  10. 10.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York (1962).Google Scholar
  11. 11.
    E. H. Spanier, Algebraic Topology, McGraw-Hill, New York (1966).Google Scholar
  12. 12.
    D. Montgomery and L. Zippin, Topological Transformation Groups, Academic Press, New York, London (1955).Google Scholar
  13. 13.
    J. Szenthe, “On the topological characterization of transitive Lie group actions,” Acta Sci. Math.,36, No. 3/4, 323–344 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. N. Berestovskii

There are no affiliations available

Personalised recommendations