Skip to main content

Logical reformulation of quantum mechanics. I. Foundations

Abstract

The basic rules of quantum mechanics are reformulated. They deal primarily with individual systems and do not assume that every ket may represent a physical state. The customary kinematic and dynamic rules then allow to construct consistent Boolean logics describing the history of a system, following essentially Griffiths' proposal. Logical implication is defined within these logics, the multiplicity of which reflects the complementary principle. Only one interpretative rule of quantum mechanics is necessary in such a framework. It states that these logics providebona fide foundations for the description of a quantum system and for reasoning about it. One attempts to build up classical physics, including classical logic, on these quantum foundations. The resulting theory of measurement needs not to statea priori that the eigenvalues of an observable have to be the results of individual measurements nor to assume wave packet reduction. Both these properties can be obtained as consequences of the basic rules. One also needs not to postulate that every observable is measurable, even in principle. A proposition calculus is obtained, allowing in principle the replacement of the discussion of problems concerned with the practical interpretation of experiments by due calculations.

This is a preview of subscription content, access via your institution.

References

  1. J. Von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, 1955).

  2. R. Griffiths,Stat. Phys. 36:219 (1984).

    Google Scholar 

  3. R. Griffiths,Am. J. Phys. 55:11 (1987).

    Google Scholar 

  4. R. Omnès,C. R. Acad. Sci. 304:1039 (1987).

    Google Scholar 

  5. R. Omnès,Phys. Lett. A 125:169 (1987).

    Google Scholar 

  6. P. A. M. Dirac,The Principles of Quantum Mechanics, 4th ed. (Clarendon Press, Oxford, 1956).

    Google Scholar 

  7. B. d'Espagnat,Conceptual Foundations of Quantum Mechanics, 2nd ed. (W. A. Benjamin, Reading, Massachusetts, 1976).

    Google Scholar 

  8. H. Primas,Chemistry, Quantum Mechanics and Reductionism (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  9. M. Reed and B. Simon,Functional Analysis, Vol. I (Academic Press, New York, 1972).

    Google Scholar 

  10. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47:777 (1935).

    Google Scholar 

  11. W. V. Quine,Mathematical Logic (Harvard University Press, Cambridge, Massachusetts, 1965).

    Google Scholar 

  12. R. P. Feynman,Rev. Mod. Phys. 20:367 (1948).

    Google Scholar 

  13. V. Aharonov, P. G. Bergman, and J. L. Lebowitz,Phys. Rev. 134B:1410 (1964).

    Google Scholar 

  14. A. Renyi,Foundations of Probability (Holden-Day, San Francisco, 1970).

    Google Scholar 

  15. B. d'Espagnat,Phys. Lett. A 124:204 (1987).

    Google Scholar 

  16. M. Jammer,The Philosophy of Quantum Mechanics (Wiley, New York, 1974);The Conceptual Development of Quantum Mechanics (McGraw-Hill, New York, 1966).

    Google Scholar 

  17. H. Weyl,Bull. Am. Math. Soc. 56:115 (1950).

    Google Scholar 

  18. C. L. Fefferman,Bull. Am. Math. Soc 9:129 (1983).

    Google Scholar 

  19. L. Hörmander,The Analysis of Linear Partial Differential Operators (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  20. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer,Ann. Phys. (N.Y.) 111:61, 111 (1978).

    Google Scholar 

  21. I. Daubechies, unpublished.

  22. I. Daubechies, A. Grossmann, and Y. Meyer,J. Math. Phys. 27:1271 (1986).

    Google Scholar 

  23. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  24. E. P. Wigner,Am. J. Phys. 31:6 (1963).

    Google Scholar 

  25. W. Heisenberg,Z. Phys. 43:172 (1927).

    Google Scholar 

  26. W. Pauli,Die Allgemeinen Prinzipien der Wellenmechanik, in Handbuch der Physik (Springer-Verlag, Berlin, 1933).

    Google Scholar 

  27. L. Van Hove, private communication.

  28. H. Margenau, inQuantum Theory of Atoms, Molecules and the Solid State. A Tribute to John G. Slater, P. O. Löwdin, ed. (Academic Press, New York, 1966).

    Google Scholar 

  29. N. Bohr,Atomic Physics and Human Knowledge (Wiley, New York, 1963).

    Google Scholar 

  30. E. Schrödinger,Naturwissenschaften 23:807, 823, 844 (1935).

    Google Scholar 

  31. D. Bohm,Quantum Theory (Constable, London, 1954).

    Google Scholar 

  32. F. London and E. Bauer,La théorie de l'observation en mécanique quantique (Hermann, Paris, 1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Omnès, R. Logical reformulation of quantum mechanics. I. Foundations. J Stat Phys 53, 893–932 (1988). https://doi.org/10.1007/BF01014230

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014230

Key words

  • Quantum mechanics
  • foundations
  • logic
  • classical limit
  • wave packet reduction