Skip to main content
Log in

Environmental information stored in otoliths: insights from stable isotopes

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The present study compares the stable oxygen-and carbon-isotope ratios (180:16O;13C:12C) in the otoliths of Atlantic cod,Gadus morhua, with those expected at equilibrium with seawater. Otoliths from juveniles reared for a 3 mo period under controlled conditions indicate that otoliths are formed in isotopic disequilibrium with seawater. This is probably due to positive metabolic fractionating of the heavier isotopes. This “vital effect” remains constant over the temperature range studied here (9 to 16°C) but may differ among other species. Our data indicate that the concentration of18O in calcium carbonate is inversely related to temperature and is described as ∂18Oa − ∂w − 3.79 − 0.200(T°C). The13C:12C ratios of otoliths and body tissues are related to the carbon ratio in the food source, although we found that the13C concentration is considerably higher in the otoliths relative te, the body tissues and the diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharon P (1991) Recorders of reef environment histories: stable isotopes in corals, gaint claims, and calcareous algae. Coral Reefs 10: 71–90

    Google Scholar 

  • Araujo-Lima CARM, Forsberg BR, Victoria R, Martinelli L (1986) Energy sources for detritivorous fishes in the Amazon. Science, NY 234: 1256–1258

    Google Scholar 

  • Bender MM, Rouhani I, Vines HM, Black CC Jr (1973)13C/12C ratio changes in crassulacean acid metabolism plants. Pl Physiol 52:427–430

    Google Scholar 

  • Brothers EB, Mathews CP, Lasker R (1976) Daily growth increments in otoliths from larval and adult fishes. Fish Bull US 74: 1–8

    Google Scholar 

  • Bunn SE, Barton DR, Hynes HBN, Power G, Pope MA (1989) Stable isotope analysis of carbon flow in a tundra river system. Can J Fish aquat Sciences 46: 1769–1775

    Google Scholar 

  • Calvin M, Benson AA (1948) The path of carbon in photosynthesis. Science, NY 107: 476–80

    Google Scholar 

  • Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish aquat Sciences 42: 1014–1032

    Google Scholar 

  • Carlström (1963) A crystallographic study of vertebrate otoliths. Biol Bull mar biol Lab, Woods Hole 125: 441–563

    Google Scholar 

  • Craig H (1954) Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. J Geol 62: 115–145

    Google Scholar 

  • Degens ET, Deuser WG, Haedrich RL (1969) Molecular structure and composition of fish otoliths. Mar Biol 2: 105–113

    Google Scholar 

  • Degens ET, Guillard RL, Sackett WM, Hellebust JA (1968) Metabolic fractionation of carbon isotopes in marine plankton. 1. Temperature and respiration experiments. Deep-Sea Res 15: 1–9

    Google Scholar 

  • DeNiro MJ, Epstein S (1979) Reconstruction of aspects of diets of extant fossil animals using the stable isotopes of nitrogen. Proc geol Soc Am (Abs) 11: 412

    Google Scholar 

  • Devereux I (1967) Temperature measurements from oxygen isotope ratios of fish otoliths. Science, NY 155: 1684–1685

    Google Scholar 

  • Dunbar RB, Wefer G (1984) Stable isotope fractionation in benthic foraminifera from the Peruvian continental margin. Mar Geol 59: 215–225

    Google Scholar 

  • Emiliani C (1955) Isotopic paleotemperatures. Science, NY 154: 851–857

    Google Scholar 

  • Emiliani C (1966) Paleotemperature analysis of Caribbean cores. P6304-8 and P6304-9 and a generalized temperature curve for the past 425,000 years. J Geol 74: 109–126

    Google Scholar 

  • Emiliani C, Hudson JH, Shinn EA, Georay RY, Lidz B (1978) Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep sea coral from Blake Plateau. Science, NY 202: 627–628

    Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Bull geol Soc Am 64: 1315–1326

    Google Scholar 

  • Fairbanks RG (1982) The origin of continental shelf and slope water in the New York Bight and Gulf of Maine: evidence from H2 18O/H2 16O ratio measurements. J geophys Res 87: 5796–5808

    Google Scholar 

  • Fry B, Anderson RK, Entzeroth L, Bird JL, Parker PL (1984)13C enrichment and oceanic food wed structure in the northwestern Gulf of Mexico. Contr mar Sci Univ Tex 27: 49–63

    Google Scholar 

  • Fry B, Parker PL (1979) Animal diet in Texas seagrass meadows: δ13C evidence for the importance of benthic plants. Estuar cstl mar Sci 8: 499–509

    Google Scholar 

  • Goreau TJ (1977) Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals inMontastrea annularis. Proc R Soc (Ser B) 196: 291–315

    Google Scholar 

  • Grossman EL (1982) Stable isotopes in live benthic foraminifera from the Southern California Borderland. PhD. dissertation. University of Southern California, Los Angeles

    Google Scholar 

  • Grossman EL, Ku T-L (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chern Geol 59: 59–74

    Google Scholar 

  • Haines EB, Montagne CL (1979) Food sources of estuarine invertebrates analyzed using13C/12C ratios. Ecology 60: 48–56

    Google Scholar 

  • Hatch MD, Slack CR (1966) Photosynthesis by sugarcane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J 101: 103–111

    Google Scholar 

  • Hesslein RH, Capel MJ, Fox DE, Hallard KA (1991) Stable isotopes of sulfur, carbon and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River basin, Canada. Can J Fish aquat Sciences 48: 2258–2265

    Google Scholar 

  • Hoefs J (1980) Stable isotope geochemistry. Springer-Verlag, New York

    Google Scholar 

  • Horibe Y, Oba T (1972) Temperature scales fo aragonite-water and calcite-water systems [In Jap] Fossils 23/24: 69–79

    Google Scholar 

  • Iacumin P, Bianucci G, Longinelli A (1992) Oxygen and carbon isotopic composition of fish otoliths. Mar Biol 113: 537–542

    Google Scholar 

  • Irie T (1955) The crystal texture of the otolith of marine teleost Pseudosciaena. J Fac Fish Anim Husb Hiroshima Univ 3: 311–317

    Google Scholar 

  • Jones C (1986) Determining age of larval fish with the otolith increment technique. Fish Bull US 84: 91–103

    Google Scholar 

  • Jones DS, Williams DF, Arthur MA (1983) Growth history and ecology of the Atlantic surf clamSpisula solidissima (Dillwyn) as revealed by stable isotopes and annual shell increments. J exp mar Biol Ecol 73: 225–242

    Google Scholar 

  • Junk G. Svec H (1958) The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gases from various sources. Geochim cosmochim Acta 14: 234–243

    Google Scholar 

  • Kalish JM (1991a)13C and 180 isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar Ecol Prog Ser 75: 191–203

    Google Scholar 

  • Kalish JM (1991b) Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Mar Biol 110: 37–47

    Google Scholar 

  • Killingley JS (1980) Migrations of California gray whales tracked by oxygen-18 variations in their epizoic barnacles. Science, NY 207: 759–760

    Google Scholar 

  • Killingley JS, Berger WH (1979) Stable isotopes in a mollusk shell: detection of upwelling events. Science, NY 205: 186–188

    Google Scholar 

  • Krantz DE, Williams DF, Jones DS (1987) Ecological and paleoenvironmental information using stable isotope profiles from living and fossil molluscs. Palaeogeogr Palaeoclim Palaeoecol 58: 249–266

    Google Scholar 

  • Kroopnick P, Craig H (1972) Atmospheric oxygen: isotopic composition and solubility fractionation. Science, NY 175: 54–56

    Google Scholar 

  • Lehninger AL (1975) Biochemistry. New York: Worth Publishers, Inc.

    Google Scholar 

  • McConnaughey T (1989a)13C and18O disequilibrium in biological carbonates. I. Patterns. Geochim cosmochim Acta 53: 151–162

    Google Scholar 

  • McConnaughey T (1989b)13C and18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim cosmochim Acta 53: 151–162

    Google Scholar 

  • McConnaughey T, McRoy CP (1979) Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Mar Biol 53: 257–262

    Google Scholar 

  • McCrea JM (1950) The isotopic chemistry of carbonates and a paleotemperature scale. J chem phys 18: 849–857

    Google Scholar 

  • Merwe van der NJ (1982) Carbon isotopes, photosynthesis, and archaeology. Am Scient 70: 596–606

    Google Scholar 

  • Mulcahy SA, Killingley JS, Phleger CF, Berger WH (1979) Isotopic composition of otoliths from a bentho-pelagic fish,Coryphaenoides acrolepsi, Macouridae gadiformes. Oceanol Acta 2: 423–427

    Google Scholar 

  • Northcote TG, Hendy CH, Nelson CS, Boubee JAT (1992) Tests for migratory history of the New Zealand common smelt (Retropinna retropinna (Richardson)) using otolith isotopic composition. Ecol Freshwat Fish 1: 61–72

    Google Scholar 

  • Pardue JW, Scanlan RS, Van Baalen C, Parker PL (1976) Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green algae. Geochim cosmochim Acta 40: 309–312

    Google Scholar 

  • Parker PL, Behrens EW, Calder JA, Shultz D (1972) Stable carbon isotope ratio variations in the organic carbon from Gulf of Mexico sediments. Contr mar Sci Univ Tex 16: 139–147

    Google Scholar 

  • Radke RL (1984) Formation and structural composition of larval striped mullet otoliths. Trans Am Fish Soc 113: 186–191

    Google Scholar 

  • Radtke RL, Dean JM (1982) Increment formation in the otoliths of embryos, larvae and juveniles of the mummichog,Fundulus heteroclitus. Fish Bull US 80: 201–215

    Google Scholar 

  • Radtke RL, Williams DF, Hurley PCF (1987) The stable isotopic composition of bluefin tuna (Thunnus thynnus) otoliths: evidence for physiological regulation. Comp Biochem Physiol 87A: 797–801

    Google Scholar 

  • Romanek CS, Jones DS, Williams DF, Krantz DE, Radtke R (1987) Stable isotopic investigation of physiological and environmental changes recorded in shell carbonate from the giant clamTridacna maxima. Mar Biol 94: 385–393

    Google Scholar 

  • Savin SM (1977) The history of the earth's surface temperature during the past 100 million years. A Rev Earth planet Sciences 5: 319–355

    Google Scholar 

  • Showers WJ, Bevis M (1988) Amazon corse stratigraphy: evidence for the source of the tropical freshwater spike. Palaeogeogr Palaeoclim Palaeoecol 64: 189–199

    Google Scholar 

  • Showers WJ, Margolis SV (1985) Evidence for a tropical freshwater spike during the last glacial/interglacial transition in the Venezuela Basin: δ18O and δ13C of calcareous plankton. Mar Geol 68: 145–165

    Google Scholar 

  • Smith BN, Epstein S (1971) Two categories of13C/12C ratios for higher plants. Pl Physiol 47: 380–384

    Google Scholar 

  • Stump BN, Frazer NJW (1973) Simultaneous determination of carbon, nitrogen and hydrogen in organic compounds. Nucl Sci Abstr 28: p. 746

    Google Scholar 

  • Sweeney RC, Liu KK, Kaplan IR (1978) Oceanic nitrogen isotopes and their uses in determining the source of sedimentary nitrogen. In: Robinson BW (ed) Stable isotopes in the earth sciences, Department of Science and Land Research, Wellington, New Zealand. pp 9–26

    Google Scholar 

  • Tan FC, Parson GJ, Walker RW (1973) Sampling, extraction, and13C/12C analysis of total dissolved CO2, in marine environments. Bedford Institute of Oceanography, Dartmouth, Nova (Scotia, Canada Rep. Ser. BI-R-73-16)

    Google Scholar 

  • Tanaka N, Monaghan MC, Rye DM (1986) Contribution of metabolic carbon to molluse and barnacle shell carbonate. Nature, Lond 10: 520–523

    Google Scholar 

  • Tarutani T, Clayton RN, Mayeda TK (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim cosmochim Acta 33: 987–996

    Google Scholar 

  • Teeri JA, Schoeller DA (1979) δ13C values of an herbivore and the ratio of C3 and C4 plant carbon in its diet. Oecologia 39: 197–200

    Google Scholar 

  • Thayer GW, Parker PL, LaCroix MW, Fry B (1978) The stable carbon isotope ratio of some components of an eelgrass, Zostera marina, bed. Oecologia 35: 1–12

    Google Scholar 

  • Thomas C (1993) Stable isotope analyses differentiate between different trophic pathways supporting rocky reef fishes. Mar Ecol Prog Ser 95: 19–24

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J chem Soc 108: 562–581

    Google Scholar 

  • Urey HC, Lowenstein HA, Epstein S, McKinney CR (1951) Measurements of paleotemperatures and temperatures of the upper Cretaceous of England, Denmark, and the southeastern United States. Bull geol Soc Am 62: 399–416

    Google Scholar 

  • Wickman FE (1952) Variations in the relative abundance of the carbon isotopes in plants. Geochim cosmochim Acta 2: 243–253

    Google Scholar 

  • Williams DF, Rottger R, Schmaljohann R, Keigwin L (1981) Oxygen and carbon isotopic fractionation and algal symbiosis in the benthic forminifera,Heterostegina depressa. Palaeogeogr Palaeoclim Palaeoecol 33: 231–251

    Google Scholar 

  • Williams DF, Sommer MA, Bender ML (1977) Carbon isotopic compositions of recent planktonic foraminifera of the Indian Ocean. Earth planet Sci Lett 36: 391–403

    Google Scholar 

  • Wong WW, Sackett WM (1978) Fractionation of stable carbon isotopes by marine phytoplankton. Geochim cosmochim Acta 42: 1809–1815

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. F. Strathmann, Friday Harbor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radtke, R.L., Lenz, P., Showers, W. et al. Environmental information stored in otoliths: insights from stable isotopes. Mar. Biol. 127, 161–170 (1996). https://doi.org/10.1007/BF00993656

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00993656

Keywords

Navigation