Skip to main content
Log in

Influence of food concentration, temperature and salinity on the larval development ofBalanus amphitrite

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Influence of food concentration (0.5, 1 and 2 x 105 cell ml−1 ofSkeletonema costatum), temperature (20 and 30°C) and salinity (15, 25 and 35‰) on the larval development ofBalanus amphitrite (Cirripedia: Thoracica) was examined. The mortality rate at 20°C was lower than at 30°C in general. Increase in food concentration from 0.5 to 1 x 105 cells ml−1 improved the survival rate, but this was not evident when food concentration was increased to 2 x 105 cells ml−1. The results indicate that food availability and temperature jointly determine the energy allocation for metamorphic progress. It was observed that the influence of the tested variables varied with instar. At 20 °C the mean duration of the second instar exceeded 3 d and was much longer than other instar durations. The fourth, fifth and sixth instars and the total naupliar period showed that the effect of different salinities at given food concentrations was negligible at 20°C, while at 30°C there was a marked decrease in duration with increasing salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anil AC (1986) Studies on marine biofouling in the Zuari Estuary (Goa) west coast of India. Ph.D. thesis. Karnataka University, Dharwad, Karnataka, India

    Google Scholar 

  • Anil AC (1991) Studies on macrofouling ecology of cirripedes in Hamana Bay (Japan). Ph.D. thesis, Faculty of Agriculture, University of Tokyo, Tokyo, Japan

    Google Scholar 

  • Anil AC, Chiba K, Okamoto K (1990) Macrofouling community structure and ecology of barnacles in Hamana Bay (Japan). Biofouling 2: 137–150

    Google Scholar 

  • Anil AC, Chiba K, Okamoto K, Kurokura K (1995) Influence of temperature and salinity on the larval development ofBalanus amphitrite: implications in the fouling ecology. Mar Ecol Prog Ser 118: 159–166

    Google Scholar 

  • Costlow J, Bookhout C (1958) Larval development ofBalanaus amphitrite var.denticulata Broch reared in the laboratory. Biol Bull mar biol Lab, Woods Hole 114: 284–295

    Google Scholar 

  • Crisp DJ (1984) Overview of research on marine invertebrate larvae, 1940–1980. Marine biodeterioration: an interdisciplinary study. Costlow JD, Tipper RC (eds) U.S. Naval Institute, Annapolis, Md., pp 103–126

    Google Scholar 

  • Crisp DJ, Costlow JD (1963) The tolerante of developing embryos to salinity and temperature. Oikos 14: 22–34

    Google Scholar 

  • Dineen JF Jr, Hines AH (1992) Interactive effects of salinity and adult extract upon settlement of the estuarine barnacleBalanus improvisus (Darwin, 1854). J exp mar Biol Ecol 156: 239–252

    Google Scholar 

  • Dineen JF Jr, Hines AH (1994) Larval settlement of the polyhaline barnacleBalanus eburneus (Gould): eue interactions and comparisons with two estuarine congeners. J exp mar Biol Ecol 179: 223–234

    Google Scholar 

  • Harms J (1984) Influence of water temperature on larval development ofEliminius modestus andSemibalanus balanoides (Crustacea, Cirripedia). Helgoländer Meeresunters 38: 123–134

    Google Scholar 

  • Harms J (1986) Effects of temperature and salinity on larval development ofEliminius modestus (Crustacea, Cirripedia) from Helgoland (North Sea) and New Zealand. Helgoländer Meeresunters 40:355–376

    Google Scholar 

  • Hirano R (1962) Mass rearing of barnacle larvae. Bull mar biol Stn Asamushi 11(2): 77–80

    Google Scholar 

  • Iwaki T (1981) Reproductive ecology of some common species of barnacles in Japan. Mar Fouling, Tokyo 3(1) 61–69

    Google Scholar 

  • Karande AA (1967) On Cirripede crustaceans (barnacles) an important fouling group in Bombay waters. Proc Symp Crustacea 1965, Ernakulum, Cochin (Ser. 4) 1942–1952 (Mar Biol Ass India)

  • Lucas MI, Walker G, Holland D, Crisp DJ (1979) An energy budget for the free-swimming and metamorphosing cypris larva ofBalanus balanoides (Crustacea, Cirripedia). Mar Biol 55: 221–229

    Google Scholar 

  • Olson RR, Olson MH (1989) Food limitations of planktotrophic marine invertebrate larvae does it control recruitment success? A Rev Ecol Syst 20: 255–274

    Google Scholar 

  • Pechenik JA, Rittschof D, Schmidt AR (1993) Influence of delayed metamorphosis on survival and growth of juvenile barnaclesBalanus amphitrite. Mar Biol 115: 287–294

    Google Scholar 

  • Scheltema RS, Williams IP (1982) Significance of temperature to larval survival and length of development inBalanus eburneus (Crustacea: Cirripedia). Mar Ecol Prog Ser 9: 43–49

    Google Scholar 

  • Shalla SHA, Ghobashy AFA, Hartnoll RG (1995) Studies on the barnacleBalanus amphitrite (Darwin, 1854) (Cirripedia) from Lake Timsah in the Suez Canal. Crustaceana 68(4): 503–517

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Stone CJ (1988) Test of sequential feeding regimes for larvae ofEliminius modestus Darwin (Cirripedia: Balanomorpha). J exp mar Biol Ecol 115: 41–51

    Google Scholar 

  • Thorson G (1950) Reproduction and larval development of Danish marine bottom invertebrate larvae. Biol Rev 25: 1–45

    Google Scholar 

  • Tighe-Ford DJ, Power MJD, Vaile DC (1970) Laboratory rearing of barnacle larvae for antifouling research. Helgoländer wiss Meeresunters 20: 293–405

    Google Scholar 

  • West TL, Costlow JD (1987) Size regulation in the larvae of the crustaceanBalanus eburneus (Cirripedia: Thoracica). Mar Biol 96: 47–58

    Google Scholar 

  • Yule AB (1984) The effect of temperature on the swimming activity of barnacle nauplii. Mar Biol Lett 5: 1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anil, A.C., Kurian, J. Influence of food concentration, temperature and salinity on the larval development ofBalanus amphitrite . Mar. Biol. 127, 115–124 (1996). https://doi.org/10.1007/BF00993651

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00993651

Keywords

Navigation