Skip to main content
Log in

Diverted development of reproductive organs: A source of morphological innovation in land plants

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Recent discussions of animal development, particularly at the level of molecular genetics, have emphasized modularity, dissociation and co-option as basic principles of evolutionary developmental biology. These concepts are discussed in relation to two specific structural innovations in land plant evolution: the leaves (microphylls) of lycopsids, and the interseminal scales ofBennettitales. Both structures appear to have been derived evolutionarily by the diverted development of reproductive organs. In the case of lycopsids, recent analyses of phylogenetic relationships suggest that leaves are sterilized sporangia modified for photosynthetic assimilation. In the case ofBennettitales, structural data suggest that the interseminal scales are sterilized “cupules” modified for protection of the ovules. In both cases, multiplication of reproductive organs seems to have accentuated functional redundancy, and together with the developmental autonomy (dissociation) already inherent in the modular construction of plants, appears to have facilitated sterilization and co-option of some of these structures for new purposes. Numerous other examples in plants illustrate the same principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bateman, R. M., 1992: Morphogenetic reconstruction, palaeoecology and phylogeny ofOxroadia gracilis.Alvin emend., andO. coniferata sp. nov.: anatomically preserved lycopods from Oxroad Bay, SE Scotland. — PalaeontographicaB228: 29–103.

    Google Scholar 

  • —, 1994: Evolutionary-developmental change in the growth architecture of fossil rhizomorphic lycopods: scenarios constructed on cladistic foundations. — Biol. Rev.69: 527–598.

    Google Scholar 

  • —, 1994: Saltational evolution of form in vascular plants: a neoGoldschmidtian synthesis. — InIngram, D. S., Hudson, S., (Eds): Shape and form in plants and fungi, pp. 62–100. — London: Academic Press.

    Google Scholar 

  • Benson, M., 1904:Telangium scotti, a new species ofTelangium (Calymmatotheca) showing structure. — Ann. Bot.18: 161–177.

    Google Scholar 

  • Bonamo, P. M., Banks, H. P., Grierson, J. D., 1988:Leclercqia, Haskinsia, and the role of leaves in the delineation of Devonian lycopod genera. — Bot. Gaz.149: 222–239.

    Google Scholar 

  • Bower, F. O., 1890: On antithetic as distinct from homologous alternation of generations in plants. — Ann. Bot.4: 347–370.

    Google Scholar 

  • —, 1894a: Studies in the morphology of spore-producing members:Equisetineae andLycopodineae. — Philos. Trans. Roy. Soc. LondonB185: 473–572.

    Google Scholar 

  • —, 1894b: A theory of the strobilus in archegoniate plants. — Ann. Bot.8: 343–365.

    Google Scholar 

  • —, 1904: Studies in the morphology of spore-producing members. V. General comparisons and conclusions. — Philos. Trans. Roy. Soc. LondonB196: 191–257.

    Google Scholar 

  • —, 1908: The origin of a land flora. — London: Macmillan.

    Google Scholar 

  • —, 1935: Primitive land plants. — London: Macmillan.

    Google Scholar 

  • Crane, P. R., 1985: Phylogenetic analysis of seed plants and the origin of angiosperms. — Ann. Missouri Bot. Gard.72: 716–793.

    Google Scholar 

  • —, 1988: Major clades and relationships in the “higher” gymnosperms. — InBeck, C. B., (Ed): Origin and evolution of gymnosperms, pp. 218–272. — New York: Columbia University Press.

    Google Scholar 

  • —, 1990: The phylogenetic context of microsporogenesis — InBlackmore, S., Knox, R. B., (Eds): Microspores: evolution and ontogeny, pp. 11–41. — London: Academic Press.

    Google Scholar 

  • De Beer, B., 1930: Embryology and evolution. — Oxford: Clarendon Press.

    Google Scholar 

  • Delevoryas, T., 1968: Some aspects of cycadeoid evolution. — Bot. J. Linn. Soc. London61: 137–146.

    Google Scholar 

  • Drinnan, A. N., Crane, P. R., Hoot, S., 1994: Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). — Pl. Syst. Evol., Suppl.8: 93–122.

    Google Scholar 

  • Doyle, J. A., 1978: Origin of angiosperms. — Annu. Rev. Ecol. Syst.9: 365–392.

    Google Scholar 

  • Endress, P. K., 1984: The role of inner staminodes in the floral display of some relicMagnoliales. — Pl. Syst. Evol.146: 269–282.

    Google Scholar 

  • —, 1994: Diversity and evolutionary biology of tropical flowers. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Ehrendorfer, F., 1977: New ideas about the early differentiation of angiosperms. — Pl. Syst. Evol., Suppl.1: 227–234.

    Google Scholar 

  • —, 1989: The phylogenetic position of theHamamelidae. — InCrane, P. R., Blackmore, S., (Eds): Evolution, systematics and fossil history of theHamamelidae. 1: pp. 1–17. — Oxford: Clarendon Press.

    Google Scholar 

  • Fairon-Demaret, M., 1978:Estinnophyton graciles gen. et sp. nov., a new name for specimens previously determinedProtolepidodendron wahnbachense Kräusel andWeyland from the Siegenian of Belgium. — Bull. Acad. Roy. Belgique, classe des sciences64: 597–609.

    Google Scholar 

  • —, 1979:Estinnophyton wahnbachense (Kräusel etWeyland) comb., nov. une plante remarquable du Siegenian d'Alemagne. — Rev. Palaeobot. Palynol.28: 145–160.

    Google Scholar 

  • Friedman, W. E., 1995: Organismal duplication, inclusive fitness theory, and altruism: understanding the evolution of endosperm and the angiosperm reproductive system. — Proc. Natl. Acad. Sci. USA92: 3913–3917.

    PubMed  Google Scholar 

  • Gifford, E. M., Foster, A. S., 1989: Morphology and evolution of vascular plants. 3rd edn. — New York: Freeman.

    Google Scholar 

  • Goebel, K., 1887: Outlines of classification and special morphology of plants. — Translated byGarnsey, H. E. D., Balfour I. A. — Oxford: Clarendon Press.

    Google Scholar 

  • Gould, S. J., 1977: Ontogeny and phylogeny. — Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Harris, T. M., 1926: The Rhaetic flora of Scoresby Sound East Greenland. — Medd. Gronland68(2): 45–147.

    Google Scholar 

  • —, 1932: The fossil flora of Scoresby Sound East Greenland. 3 —Caytoniales andBennettitales. — Medd. Gronland85(5): 1–133.

    Google Scholar 

  • —, 1969: The Yorkshire Jurassic Flora. III.Bennettitales. — London: British Museum (Natural History).

    Google Scholar 

  • Harvey-Gibson, R. J., 1896: Contributions towards a knowledge of the anatomy of the genusSelaginella Spr. — Ann. Bot.10: 77–88.

    Google Scholar 

  • Jacob, F., 1977: Evolution and tinkering. — Science196: 1161–1166.

    PubMed  Google Scholar 

  • Kenrick, P., Crane, P. R., 1997: The origin and early diversification of land plants: a cladistic study. — Smithsonian Series in Comparative Evolutionary Biology. — Washington: Smithsonian University Press (in press).

    Google Scholar 

  • Lauder, G., 1981: Form and function: structural analysis in evolutionary morphology. — Paleobiology7: 430–432.

    Google Scholar 

  • Li, Cheng-Sen, Edwards, D., 1992: A new genus of early land plants with novel stobilar construction from the Lower Devonian Posongchong formation, Yunnan Province, China. — Palaeontology35: 257–272.

    Google Scholar 

  • McKinney, M. L., McNamara, K. J., 1991: Heterochrony: the evolution of ontogeny. — New York: Plenum Press.

    Google Scholar 

  • Pedersen, K. R., Crane, P. R., Friis, E. M., 1989: The morphology and phylogenetic significance ofVardekloeftia Harris (Bennettitales). — Rev. Palaeobot. Palynol.60: 7–24.

    Google Scholar 

  • Raff, R., 1996: The shape of life: genes, development and the evolution of animal form. — Chicago: University of Chicago Press.

    Google Scholar 

  • Raven, P. H., Evert, R. F., Eichhorn, S. E., 1992: Biology of plants. 5th edn. — New York: Worth.

    Google Scholar 

  • Rieppel, O., 1990: Ontogeny — a way forward for systematics, a way backward for phylogeny. — Biol. J. Linn. Soc.39: 177–191.

    Google Scholar 

  • Seward, A. C., 1912: A petrifiedWilliamsonia from Scotland. — Philos. Trans. Roy. Soc. London203: 101–126.

    Google Scholar 

  • —, 1917: Fossil plants. III.Pteridospermae, Cycadofilices, Cordaitales, Cycadophyta. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Schweitzer, H.-J., 1980: ÜberDrepanophycus spinaeformis Goeppert. — Bonner Paläobot. Mitteil.7: 1–29.

    Google Scholar 

  • Stebbins, G. L., 1974: Flowering plants: evolution above the species level. — Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • —, 1981: Why are there so many species of flowering plants? — Bioscience31: 573–577.

    Google Scholar 

  • Stewart, W. N., Rothwell, G. W., 1993: Paleobotany and the evolution of plants. 2nd edn. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Stopes, M. C., 1918: New Bennettitean cones from the British Cretaceous. — Philos. Trans. Roy. Soc. London, Ser.B 208: 389–440.

    Google Scholar 

  • Takhtajan, A., 1969: Flowering plants: origin and dispersal. — Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Turner, J. J., 1924: Origin and development of vascular system ofLycopodium lucidulum. — Bot. Gaz.78: 215–225.

    Google Scholar 

  • Wagner, G. P., 1996: Homologues, natural kinds and the evolution of modularity. — Amer. Zoologist36: 36–43.

    Google Scholar 

  • Walker, J. W., Walker, A. G., 1984: Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. — Ann. Missouri Bot. Gard.71: 464–521.

    Google Scholar 

  • Walton, J., 1964: On the morphology ofZosterophyllum and some other early Devonian plants. — Phytomorphology14: 155–160.

    Google Scholar 

  • Wieland, G. R., 1906: American fossil cycads.1, structure. Publ. — Carnegie Institution, Washington34(2): 1–277.

    Google Scholar 

  • Zimmermann, W., 1952: Main results of the “Telome Theory”. — Palaeobot.1: 456–470.

    Google Scholar 

  • —, 1965: Die Telomtheorie. — Stuttgart: G. Fischer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, P.R., Kenrick, P. Diverted development of reproductive organs: A source of morphological innovation in land plants. Pl Syst Evol 206, 161–174 (1997). https://doi.org/10.1007/BF00987946

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00987946

Key words

Navigation