Advertisement

Siberian Mathematical Journal

, Volume 29, Issue 1, pp 45–53 | Cite as

Torsion-free Abelian groups of finite rank without nilpotent endomorphisms

  • S. F. Kozhukhov
Article

Keywords

Abelian Group Finite Rank Nilpotent Endomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. Jonsson, “On direct decompositions of torsion-free Abelian groups,” Math. Scand.,7, 361–371 (1959).Google Scholar
  2. 2.
    S. F. Kozhukhov, “Abelian groups without nilpotent endomorphisms,” in: Abelian Groups and Modules [in Russian], Tomsk State Univ. (1979), pp. 87–94.Google Scholar
  3. 3.
    S. F. Kozhukhov, “A class of almost completely decomposable torsion free Abelian groups,” Izv. Vyssh. Uchebn. Zaved., Mat.,10, 29–36 (1983).Google Scholar
  4. 4.
    E. L. Lady, “Almost completely decomposable torsion-free Abelian groups,” Proc. Am. Math. Soc.,45, 41–47 (1974).Google Scholar
  5. 5.
    R. Burkhardt, “Elementary Abelian extensions of finite rigid systems,” Commun. Algebra,11, No. 13, 1473–1499 (1983).Google Scholar
  6. 6.
    S. F. Kozhukhov, “Almost completely decomposable torsion-free Abelian groups,” in: Ninth All-Union Symposium on Group Theory. Abstracts of Papers [in Russian], Moscow State Pedagog. Inst. (1984), pp. 143–144.Google Scholar
  7. 7.
    L. Fuchs, Infinite Abelian Groups [Russian translation], Vol. 1, Mir, Moscow (1974).Google Scholar
  8. 8.
    L. Fuchs, Infinite Abelian Groups [Russian translation], Vol. 2, Mir, Moscow (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • S. F. Kozhukhov

There are no affiliations available

Personalised recommendations