Siberian Mathematical Journal

, Volume 29, Issue 1, pp 24–29 | Cite as

A realization of dimension functions. I

  • A. N. Dranishnikov


Dimension Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. I. Kuz'minov, “The homological dimension theory,” Usp. Mat. Nauk,33, No. 5, 3–49 (1968).Google Scholar
  2. 2.
    V. I. Kuz'minov, “On the cohomological dimension of compacta,” Sib. Mat. Zh.,5, No. 6, 1282–1304 (1964).Google Scholar
  3. 3.
    L. Pontryagin [Pontrjagin], “Sur une hypothèse fondamentale de la dimension,” C. R. Acad. Sci.,190, 1105–1107 (1930).Google Scholar
  4. 4.
    V. G. Boltyanskii, “On an addition theorem for dimensions,” Usp. Mat. Nauk,6, No. 3, 99–129 (1951).Google Scholar
  5. 5.
    Y. Kodama, “On a problem of Alexandroff concerning the dimension of product spaces,” J. Math. Soc. Jpn.,11, No. 2, 94–111 (1959).Google Scholar
  6. 6.
    P. S. Aleksandrov [Alexandroff], “Einige Problemstellungen in der mengentheoretischen Topologie,” Mat. Sb., No. 1, 619–634 (1936).Google Scholar
  7. 7.
    P. S. Aleksandrov, Introduction to the Homological Dimension Theory [in Russian], Nauka, Moscow (1975).Google Scholar
  8. 8.
    E. H. Spanier, Algebraic Topology, McGraw-Hill, New York (1966).Google Scholar
  9. 9.
    H. Bredon, Introduction to the Theory of Compact Transformation Groups, Academic Press, New York-London (1972).Google Scholar
  10. 10.
    P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory [in Russian], Nauka, Moscow (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. N. Dranishnikov

There are no affiliations available

Personalised recommendations