Siberian Mathematical Journal

, Volume 33, Issue 1, pp 144–148 | Cite as

Least plurisuperharmonic majorant and multipliers of entire functions. I

  • B. N. Khabibullin


Entire Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. Koosis, “La plus petite majorante surharmonique et son rapport avec l'existence des fonctions entiéres de type exponentiel jouant le rôle de multiplicateurs,” Ann. Inst. Fourier (Grenoble)33, No. 1, 67–107 (1983).Google Scholar
  2. 2.
    A. Beurling and P. Malliavin, “On Fourier transforms of measures with compact support,” Acta Math.,107, No. 3/4, 291–303 (1962).Google Scholar
  3. 3.
    B. N. Khabibullin, “Growth of entire fucntions of exponential type along the imaginary axis,” Dokl. Akad. Nauk SSSR,302, No. 2, 270–273 (1988).Google Scholar
  4. 4.
    V. S. Azarin and V. B. Griner, “Completeness of systems of exponentials in complex domains,” Dokl. Akad. Nauk SSSR,305 No. 1, 11–14 (1989).Google Scholar
  5. 5.
    T. W. Gamelin, Uniform Algebras, 2nd edn., Chelsea.Google Scholar
  6. 6.
    V. V. Napalkov, Convolution Equations in Multidimensional Spaces [in Russian], Nauka, Moscow (1982).Google Scholar
  7. 7.
    C. A. Bernstein and B. A. Taylor, “Interpolation problems in Cn with application to harmonic analysis,” J. Anal. Math.,38, 188–254 (1980).Google Scholar
  8. 8.
    L. Hörmander, An Introduction to Complex Analysis in Several Variables 2nd ed., Elsevier (1973).Google Scholar
  9. 9.
    P. A. Meyer, Probability and Potentials [Russian translation], Mir, Moscow (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • B. N. Khabibullin

There are no affiliations available

Personalised recommendations