Siberian Mathematical Journal

, Volume 30, Issue 4, pp 626–634 | Cite as

Asymptotic behavior of subfunctions of a Schrödinger operator of finite lower order

  • A. M. Russakovskii


Asymptotic Behavior Lower Order Finite Lower Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. Ya. Levin and A. I. Kheifits, “Asymptotic behavior of subfunctions of the Schrödinger operator in an n-dimensional cone,” Dokl. Akad. Nauk SSSR,301, No. 3, 540–543 (1988).Google Scholar
  2. 2.
    G. M. Verzhbinskii, and V. G. Maz'ya, “Asymptotic behavior of solutions of second-order elliptic equations near a boundary. I.,” Sib. Mat. Zh.,12, No. 6, 1271–1289 (1971); II, Sib. Mat. Zh.,13, No. 6, 1239–1271 (1972).Google Scholar
  3. 3.
    T. Kato, “Growth properties of solutions of the reduced wave equation with a variable coefficients,” Communs. Pure Appl. Math.,12, No. 3, 403–425 (1959).Google Scholar
  4. 4.
    A. Dinghas, “Über einige Konvexitätsfragen bei partiellen Differential gleichungen von Sturmachen Typus,” Math. Ann.,155, No. 5, 397–421 (1964).Google Scholar
  5. 5.
    P. Fife, “Growth and decay properties of solutions of second-order elliptic equations,” Ann. Scuola Norm. Super. Pisa Ser. 320, No. 4, 625–701 (1966).Google Scholar
  6. 6.
    F.-J. Maeda, “Boundary-value problems for the equation Δu−qu=0 with respect to an ideal boundary,” J. Sci. Hiroshima Univ. Ser. A. Div. 1,32, No. 1, 85–146 (1968).Google Scholar
  7. 7.
    A. Baernstein II, “Proof of Edrei's spread conjecture” Proc. London Math. Soc.,26, 418–434 (1973).Google Scholar
  8. 8.
    A. Baernstein II and B. A. Taylor, “Spherical rearrangements, subharmonic functions and *-functions in n-space,” Duke Math. J.,43, No. 2, 245–268 (1976).Google Scholar
  9. 9.
    R. Gariepy and J. Lewis, “Space analogues of some theorems for subharmonic functions,” Ark. Mat.,13, No. 1, 91–105 (1975).Google Scholar
  10. 10.
    A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York (1953).Google Scholar
  11. 11.
    J. Rossi and A. Weitsman, “A unified approach to certain questions of value distribution theory,” J. London Math. Soc.,28, No. 2, 310–326 (1983).Google Scholar
  12. 12.
    B. Dahlberg, “Mean values of subharmonic functions,” Ark. Math.,10, 293–309 (1972).Google Scholar
  13. 13.
    N. V. Govorov, “Paley's hypothesis,” Funkts. Anal. Prilozhen.,3, No. 2, 41–45 (1969).Google Scholar
  14. 14.
    V. P. Petrenko, “The growth of meromorphic functions of finite lower order,” Izv. Akad. Nauk SSSR,33, No. 2, 414–454 (1969).Google Scholar
  15. 15.
    A. Baernstein II, “A generalization of the cosπρ theorem,” Trans. Am. Math. Soc.,193, No. 1, 181–197 (1974).Google Scholar
  16. 16.
    J. Anderson and A. Baernstein II “A size of the set on which a meromorphic function is large,” Proc. London Math. Soc.,36, No. 3, 518–539 (1978).Google Scholar
  17. 17.
    M. L. Sodin, “Some results on the growth of meromorphic functions of finite lower order,” in: Mathematical Physics and Functional Analysis [in Russian], Naukova Dumka, Kiev (1968), pp. 102–113.Google Scholar
  18. 18.
    V. S. Azarin, “The asymptotic behavior of subharmonic functions of finite order,” Mat. Sb.,108, No. 2, 147–167 (1979).Google Scholar
  19. 19.
    M. L. Sodin, The Growth of Entire Functions of Finite Lower Order in the Lp-Metric. Deposited in Ukr. NIITI, No. 420-Uk-D83, Kiev (1983).Google Scholar
  20. 20.
    M. Essen and D. Shea, “Applications of Denjoy integral inequalities and differential inequalities to growth problems for subharmonic and meromorphic functions,” Proc. Roy. Ir. Acad.,82, No. 2, 201–206 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. M. Russakovskii

There are no affiliations available

Personalised recommendations