Skip to main content
Log in

Existence and uniqueness of stationary solutions for a viscous compressible heat-conducting fluid with large potential and small nonpotential external forces

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. Courant and K. Q. Friedrichs, Supersonic Flow and Shock Waves, New York (1948).

  2. A. Matsumura and M. Padula, “Stability of stationary compressible flows subject to large external potential forces” (to appear).

  3. H. Bairão da Veiga, “AnL p-theory forn-dimensional stationary compressible Navier-Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions,” Comm. Math. Phys.,109, 229–248 (1987).

    Google Scholar 

  4. M. Padula, “Existence and uniqueness for viscous steady compressible motions,” in: Proc. Sem. Fis. Mat. (Trieste, 3–5 Guignio 1982), Dinamica dei fluidi e dei gaz ionizzati.

  5. A. Matsumura and T. Nishida, “The initial value problem for equations of motion of viscous and heat conducting gases,” J. Math. Kyoto Univ.,20, 67–104 (1980).

    Google Scholar 

  6. A. Matsumura and T. Nishida, “Initial boundary value problem for the equations of motion of general fluids,” in: Comput. Methods. Appl. Sci. Engng. Ed. R. Glowinski, P.-L. Lions, North Holland, Amsterdam, 1982,V, pp. 389–406.

    Google Scholar 

  7. M. Padula, “Nonlinear energy stability for the compressible Bénard problem,” Boll. Un. Mat. Ital., 5-B, 581–602.

  8. V. Coscia and M. Padula, “Nonlinear convective stability in a compressible atmosphere,” Geophys. Astrophys. Fluid Dynamics,54, 49–83 (1990).

    Google Scholar 

  9. M. Padula, “Existence and uniqueness for viscous steady compressible motions,” Arch. Rational Mech. Anal.,97, No. 2, 89–102 (1987).

    Google Scholar 

  10. M. Padula, “On the uniqueness of viscous compressible steady flows,” in: Proc. IV-th Symposium “Trends in Applications of Pure Math. to Mechanics” Ed. E. Brilla, Pitman, London, 1981.

    Google Scholar 

  11. A. Valli, “Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method,” Ann. Scuola Norm. Sup. Pisa,10, No. 4, 607–647 (1983).

    Google Scholar 

  12. A. Valli, “On the existence of stationary solutions to compressible Navier-Stokes equations,” Ann. Inst. H. Poincaré Anal. Non Linéaire,4, 99–113 (1987).

    Google Scholar 

  13. A. Valli and W. M. Zajaczkowski, “Navier-Stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case,” Comm. Math. Phys.,103, 259–296 (1986).

    Google Scholar 

  14. R. Farwig, “Stationary solutions of compressible Navier-Stokes equations with slip boundary conditions,” Comm. Partial Differential Equations,14, No. 11, 1579–1606 (1989).

    Google Scholar 

  15. R. Farwig, Stationary Solutions of the Navier-Stokes Equations for a Compressible Viscous and Heat Conducting Fluid [Preprint, SFB 256, No. 22], Bonn Univ (1988).

  16. P. Secchi, On a Stationary Problem for the Compressible Navier-Stokes Equations [Preprint, UTM 353, 354], Trento Univ. (1991).

  17. A. Matsumura and T. Nishida, “Exterior stationary problems for the equations of motion of compressible viscous and heat-conductive fluids”, in: Proc. EQUADIFF Conference 1989 /Ed. C. M. Dafermos, G. Ladas, G. Papanicolaou, M. Dekker Inc., 1989, pp. 473–479.

  18. H. Fyjita-Yashima, “Sur l'equation de Navier-Stokes compressible stationare” in: Proc. VII Congresso do Gruppo de Matemáticos de, Expressao Latina, Actas. Vol. II, Coimbre 1985, pp. 259–262.

  19. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam (1977).

    Google Scholar 

  20. J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson etC is, Paris (1967).

    Google Scholar 

  21. K. O. Friedrichs, “Symmetric positive linear differential equations,” Comm. Pure Appl. Math.,11, 333–418 (1958).

    Google Scholar 

  22. H. Bairão da Veiga, “Boundary value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow,” Rend. Sem. Mat. Univ. Padova,97, 247–273 (1988).

    Google Scholar 

  23. M. E. Bogovskiî, “Solution of some vector analysis problems connected with operators div and grad,” in: The Theory of Cubature Formulas and Applications of Functional Analysis to Equations of Mathematical Physics [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk, No. 1, 1980, pp. 5–40.

  24. S. Agmon, A. Douglis, and L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying, general boundary condition. II,” Comm. Pure Appl. Math.,17, 35–92 (1964).

    Google Scholar 

  25. L. Cattabriga, “Su un problema al contorno relativo al system a di equazioni di Stokes,” Rend. Sem. Mat. Padova,31, 1–24 (1961).

    Google Scholar 

Download references

Authors

Additional information

Ferrara, Italy. Translated fromSibirskiî Matematicheskiî Zhurnal, Vol. 34, No. 5, pp. 120–146, September–October, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novotný, A., Padula, M. Existence and uniqueness of stationary solutions for a viscous compressible heat-conducting fluid with large potential and small nonpotential external forces. Sib Math J 34, 898–922 (1993). https://doi.org/10.1007/BF00971405

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00971405

Keywords

Navigation