Siberian Mathematical Journal

, Volume 30, Issue 5, pp 773–783 | Cite as

Geometric decomposition of spatial kleinian groups and fundamental grous of 3-manifolds

  • L. D. Potyagailo


Kleinian Group Geometric Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    W. Jaco, Lectures on 3-Manifold Topology, American Mathematical Society, Providence (1980).Google Scholar
  2. 2.
    W. Thurston, Hyperbolic structures on 3-manifolds 1: deformation of acylindrical manifolds,” Ann. Math.,124, 203–246 (1986).Google Scholar
  3. 3.
    J. Morgan, “On Thurston's uniformization theorem for three-dimensional manifolds,” in: The Smith Conjecture, Academic Press, New York (1984), pp. 37–125.Google Scholar
  4. 4.
    P. Scott, “Strong annulus and torus theorem and the enclosing property of characteristic submanifolds of 3-manifolds,” Quart. J. Math.,35, No. 140, 485–506 (1984).Google Scholar
  5. 5.
    W. Jaco and P. Shalen, “A new decomposition theorem for irreducible sufficiently large manifolds,” in: Proc. of Symposia in Pure Math., AMS, No. 32 (1977), pp. 209–222.Google Scholar
  6. 6.
    C. D. Feustel, “On the torus theorem and its applications,” Trans. Am. Math. Soc.,217, 1–43 (1976).Google Scholar
  7. 7.
    B. Maskit, “Decomposition of certain Kleinian groups,” Acta Math.,130, No. 2, 243–263 (1973).Google Scholar
  8. 8.
    W. Abikoff and B. Maskit, “Geometric decomposition of Kleinian groups” Am. J. Math.,99, No. 4, 687–699 (1977).Google Scholar
  9. 9.
    B. Maskit, “On the classification of Kleinian groups 1: Koebe groups,” Acta Math.,135, No. 3/4, 249–270 (1975).Google Scholar
  10. 10.
    B. Maskit, “On the classification of Kleinian groups 2: Signatures,” Acta Math.,138, No. 1/2, 17–42 (1977).Google Scholar
  11. 11.
    L. D. Potyagailo, Discrete Groups of Mobius Transformations and Conformal Manifolds, Candidate's Dissertation, Phys.-Mat. Sci., 01.01.01, Novosibirsk (1985).Google Scholar
  12. 12.
    N. A. Gusevskii, The Geometric Decomposition of Spatial Kleinian Groups Thesis Report, International Topological Conference, Baku (October, 1987), p. 93.Google Scholar
  13. 13.
    V. Chukrow, “On Shottky groups with application to Kleinian groups,” Ann. Math.,88, No. 1, 47–61 (1968).Google Scholar
  14. 14.
    T. Jorgensen, “Compact 3-manifolds of constant negative curvature fibering over the circle,” Ann. Math.,106, 61–72 (1977).Google Scholar
  15. 15.
    P. Tukia, On Isomorphism of Geometrically Finite Mobius Groups, Preprint, University of Helsinii (1984).Google Scholar
  16. 16.
    J. Greenberg, “Discrete groups of motions,” Can. J. Math.,12, No. 3, 415–427 (1960).Google Scholar
  17. 17.
    B. Maskit, “On Klein combination theorem,” in: Advances in the Theory of Riemann surfaces, Princeton University Press (1971), pp. 297–310.Google Scholar
  18. 18.
    L. D. Potyagailo, “Three-dimensional Kleinian groups, isomorphic to the fundamental groups of a Haken-manifold,” Dokl. Akad. Nauk SSSR,303, No. 1 (1988).Google Scholar
  19. 19.
    A. Selberg, “On discontinuous groups in higher-dimensional symmetric spaces,” in: Contribution to Function Theory, Tata Institute, Bombay (1960), pp. 147–164.Google Scholar
  20. 20.
    J. Hempel, 3-Manifolds, Annal of Mathematics, Studies 86, Princeton University Press, Princeton (1976).Google Scholar
  21. 21.
    D. B. A. Epstein, “Projective planes in 3-manifolds,” Proc. Lond. Math.,11, 469–484 (1961).Google Scholar
  22. 22.
    E. Luft and D. Sjerve, “3-manifolds with subgroups Z⊕ Z⊕ Z in their fundamental groups,” Pac. J. Math.,114, No. 1, 191–207 (1984).Google Scholar
  23. 23.
    F. Waldhausen, “On irreducible 3-manifolds which are sufficiently large,” Ann. Math.,87, 58–88 (1968).Google Scholar
  24. 24.
    C. D. Feustel, “A generalization of Knezer's conjecture,” Pac. J. Math.,46, No. 1, 123–131 (1973).Google Scholar
  25. 25.
    C. D. Feustel and R. G. Gregorac, “On realizing HNN-groups in 3-manifolds,” Pac. J. Math.,46, 381–387 (1973).Google Scholar
  26. 26.
    K. Johansson, Homotopy Equivalences of 3-Manifolds with Boundaries, Lecture Notes in Mathematics, 761, Springer, Berlin (1979).Google Scholar
  27. 27.
    C. D. Feustel, “Some applications of Waldhausen's results on irreducible manifolds,” Trans. Am. Math. Soc.,149, 575–583 (1970).Google Scholar
  28. 28.
    A. F. Beardon and B. Maskit, “Limit Points of kleinian groups and finite-sided fundamental polyhedra,” Acta Math.,132, 1–2 (1974).Google Scholar
  29. 29.
    T. W. Tucker, “Correction to paper of A. Marden,” Ann. Math.,102, 565–566 (1975).Google Scholar
  30. 30.
    M. Brin, “Torsion free action on 1-acyclic manifolds and the loop theorem,” Topology,20, 353–364 (1981).Google Scholar
  31. 31.
    A. L. Edmonds, “A topological proof of the equivariant Denh lemma,” Trans. Am. Math. Soc.,297, 605–615 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • L. D. Potyagailo

There are no affiliations available

Personalised recommendations