Advertisement

Siberian Mathematical Journal

, Volume 30, Issue 5, pp 730–744 | Cite as

Extension of conformal mappings and hyperbolic metrics

  • S. L. Krushkal'
Article

Keywords

Conformal Mapping Hyperbolic Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. Kühnau (Kyunau), “Quasikonforme Fortsetzbarkeit, Fredholmsche Eigenwerte and Grunskysche Koeffizientenbedingungen,” Ann. Acad. Sci. Fenn. Ser. A.I. Math.,7, 383–391 (1982).Google Scholar
  2. 2.
    R. Kühnau (Kyunau), “Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit,” Comm. Math. Helv.,61, No. 2, 290–307 (1986).Google Scholar
  3. 3.
    R. Kühnau (Kjunau), “Möglichst konforme Spiegelung an einer Jourdancurve,” Jahresber. Deutsch. Math. Verlag,90, 90–109 (1988).Google Scholar
  4. 4.
    L. V. Ahlfors, Lectures on Quasiconformal Mappings, Princeton University Press (1966).Google Scholar
  5. 5.
    S. L. Krushkal' and R. Kühnau, Quasiconformal Mapping—New Methods and Applications [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  6. 6.
    D. M. Campbell, J. G. Clunie, and W. K. Hayman, Research Problems in Complex Analysis, Aspects of Contemporary Complex Analysis, Academic Press, New York-London (1980), pp. 527–571.Google Scholar
  7. 7.
    S. L. Krushkal, “On an interpolation family of a univalent analytic function,” Sib. Mat. Zh.,28, No. 5, 88–94 (1987).Google Scholar
  8. 8.
    J. Becker, “Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen,” J. Reine und Angew. Math.,255, 23–43 (1972).Google Scholar
  9. 9.
    M. Schiffer, “The Fredholm eigenvalues of plane domains,” Pacif. J. Math.,7, No. 2, 1187–1225 (1957).Google Scholar
  10. 10.
    O. Hübner, “Die Faktorisierung konformer Abbildungen und Anwendungen,” Math. Z.,92, No. 2, 95–109 (1966).Google Scholar
  11. 11.
    H. L. Royden, Automorphisms and Isometries of Teichmüller Space, Advances in the Theory of Riemann Surfaces, Princeton Univ. Press (1971), pp. 369–383.Google Scholar
  12. 12.
    F. P. Gardiner, The Teichmüller-Kobayashi Metric for Infinite Dimensional Teichmüller spaces, Kleinian Groups and Related Topics, Springer, Berlin-New York (1983), pp. 48–67.Google Scholar
  13. 13.
    S. L. Krushkal', “On Teichmueller's theorem on extremal quasiconformal mappings,” Sib. Mat. Zh.,8, No. 2, 313–332 (1967).Google Scholar
  14. 14.
    M. Heins, “On a class of conformal metrics, Nagoya Math. J.,21, 1–60 (1962).Google Scholar
  15. 15.
    H. L. Royden, “The Ahlfors-Schwarz lemma: the case of equality,” J. d'Anal. Math.,46, 261–270 (1986).Google Scholar
  16. 16.
    S. L. Krushkal', “Differential operators and univalent functions,” Complex Variables,7, No. 1–3, 107–127 (1986).Google Scholar
  17. 17.
    C. J. Earle, On Quasiconformal Extension of the Beurling-Ahlfors Type, Contributions to Analysis, Academic Press, New York-London (1974), pp. 99–105.Google Scholar
  18. 18.
    R. S. Hamilton, “Extremal quasiconformal mappings with prescribed boundary values,” Transact. Am. Math. Soc.,138, 399–406 (1969).Google Scholar
  19. 19.
    K. Strebel, “On the existence of extremal Teichmueller mappings,” J. d'Anal. Math.,30, 464–480 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • S. L. Krushkal'

There are no affiliations available

Personalised recommendations