Advertisement

Siberian Mathematical Journal

, Volume 30, Issue 5, pp 685–698 | Cite as

Mappings of homogeneous groups and imbeddings of functional spaces

  • S. K. Vodop'yanov
Article

Keywords

Homogeneous Group Functional Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. K. Vodop'yanov and V. M. Gol'dshtein, “Lattice isomorphisms of the spaces ℒn1 and quasiconformal mappings”, Sib. Mat. Zh.,16, No. 2, 224–246 (1975).Google Scholar
  2. 2.
    S. K. Vodop'yanov and V. M. Gol'dshtein, “Functional characterizations of quasiisometric mappings”, Sib. Mat. Zh.,17, No. 4, 768–773 (1976).Google Scholar
  3. 3.
    S. K. Vodop'yanov and V. M. Gol'dshtein, “A new functional invariant for quasiconformal mappings”, in: Some Problems in Modern Function Theory (Proc. Conf. Modern Problems of Geometric Theory of Functions, Novosibirsk, 1976) [in Russian], Akad. Nauk SSSR, Sibirsk. Otd., Inst. Mat., Novosibirsk (1976), pp. 18–20.Google Scholar
  4. 4.
    V. M. Gol'dshtein and A. S. Romanov, “On mappings preserving Sobolev spaces”, Sib. Mat. Zh.,25, No. 3, 55–61 (1984).Google Scholar
  5. 5.
    A. S. Romanov, “On the change of variables in the spaces of Bessel and Riesz potentials”, in: Functional Analysis in Mathematical Physics [in Russian], Academy of Sciences of the USSR, Institute of Mathematics, Novosibirsk (1985), pp. 117–133.Google Scholar
  6. 6.
    V. G. Maz'ya and T. O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Pitman, Boston (1985).Google Scholar
  7. 7.
    I. G. Markina, “Change of variables as an automorphism of Besov spaces and spaces of Bessel potentials”, in: Materials of the 24th All-Union Scientific Student Conference: Mathematics [in Russian], Novosibirsk State Univ., Novosibirsk (1986), pp. 41–46.Google Scholar
  8. 8.
    S. K. Vodop'yanov, “Geometric properties of domains satisfying the extension condition for spaces of differentiable functions”, in: Some Applications of Functional Analysis to Problems of Mathematical Physics [in Russian], Proc. Sobolev Sem., 84-2, Akad. Nauk SSSR, Sibirsk. Otd., Inst. Mat., Novosibirsk (1984), pp. 65–95.Google Scholar
  9. 9.
    S. K. Vodop'yanov, “Functional spaces and quasiconformal mappings on homogeneous groups”, in: Proceedings of the Fifth Republican Conference on Nonlinear Problems of Mathematical Physics [in Russian], L'vov (September 1985), Donetsk State University, Donetsk (1987), pp. 107–109. (Manuscript deposited at UkrNIINTI, July 16, 1987, No. 2077.)Google Scholar
  10. 10.
    S. K. Vodop'yanov, “Anisotropic spaces of differentiable functions and quasiconformal mappings”, in: Eleventh All-Union School on Operator Theory in Function Spaces, Part 2 (Chelyabinsk, May 1986), Chelyabinsk State Univ., Chelyabinsk (1986), p. 23.Google Scholar
  11. 11.
    S. Vodop'janov, “Function spaces and quasiconformal mappings on homogeneous groups”, in: Conference on Function Spaces and Applications (Lund, June 1986), Abstracts, Lund (1986), p. 11.Google Scholar
  12. 12.
    S. K. Vodop'janov, “Function spaces and quasiconformal mappings on homogeneous groups”, in: 13 Rolf Nevanlinna Colloquium, Jeonsuu (1987), pp. 79–80.Google Scholar
  13. 13.
    S. K. Vodop'yanov, “Isoperimetric relations and conditions for the extension of differentiable functions”, Dokl. Akad. Nauk SSSR,292, No. 1, 11–15 (1987).Google Scholar
  14. 14.
    S. K. Vodop'yanov, “Geometric properties of domains and estimates for the norm of an extension operator”, Dokl. Akad. Nauk SSSR,292, No. 4, 791–795 (1987).Google Scholar
  15. 15.
    S. K. Vodop'yanov, “Geometric properties of mappings and domains. Lower estimates of the norm of the extension operator”, in: Studies in Geometry and Mathematical Analysis [in Russian], Academy of Sciences of the USSR, Siberian Branch, Institute of Mathematics, Nauka, Novosibirsk (1987), pp. 70–101.Google Scholar
  16. 16.
    S. K. Vodop'yanov, “The comparison of metric and capacity characteristics in potential theory”, in: Complex Analysis and Mathematical Physics (Divnogorsk, June–July 1987), Abstracts of Communications [in Russian], Krasnoyarsk (1987), p. 20.Google Scholar
  17. 17.
    S. K. Vodop'yanov, “Quasielliptic Lp-potential theory and its applications”, Dokl. Akad. Nauk SSSR,298, No. 4, 780–784 (1988).Google Scholar
  18. 18.
    S. K. Vodop'yanov, “The maximum principle in potential theory and imbedding theorems for anisotropic spaces of differentiable functions”, Sib. Mat. Zh.,29, No. 2, 17–33 (1988).Google Scholar
  19. 19.
    S. K. Vodop'yanov, “Potential theory on homogeneous groups”, Dokl. Akad. Nauk SSSR,303, No. 1, 11–16 (1988).Google Scholar
  20. 20.
    S. K. Vodop'yanov, “The Lp-theory of the potential and quasiconformal mappings on homogeneous groups”, in: Contemporary Problems of Geometry and Analysis [in Russian], Academy of Sciences of the USSR, Siberian Branch, Institute of Mathematics, Nauka, Novosibirsk (1989), pp. 45–89.Google Scholar
  21. 21.
    G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, New Jersey (1982).Google Scholar
  22. 22.
    O. V. Besov, V. P. Il'in, and P. I. Lizorkin, “The Lp-estimates of a certain class of nonisotropically singular integrals”, Dokl. Akad. Nauk SSSR,169, No. 6, 1250–1253 (1966).Google Scholar
  23. 23.
    E. B. Fabes and N. M. Riviere, “Singular integrals with homogeneity”, Stud. Math.,27, 19–38 (1966).Google Scholar
  24. 24.
    E. M. Stein and S. Wainger, “Problems in harmonic analysis related with curvature”, Bull. Am. Math. Soc.,84, No. 6, 1239–1295 (1978).Google Scholar
  25. 25.
    M. de Guzman, Differentiation of Integrals inR n. Lecture Notes in Math., No. 481, Springer, Berlin (1975).Google Scholar
  26. 26.
    Yu. G. Reshetnyak, Spatial Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).Google Scholar
  27. 27.
    S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1977).Google Scholar
  28. 28.
    O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, Vols. I and II, Wiley, New York (1978 and 1979).Google Scholar
  29. 29.
    Yu. A. Brudnyi, “Spaces that can be defined by means of local approximations”, Trudy Mosk. Mat. Obshch.,24, 69–132 (1971).Google Scholar
  30. 30.
    S. K. Vodop'yanov, “Interior geometry and boundary values of differentiable functions. I”, Sib. Mat. Zh.,30, No. 2, 29–42 (1989).Google Scholar
  31. 31.
    G. A. Mamedov, “On the traces of functions from certain anisotropic spaces on the subsets of an Euclidean space”, in: Eighth Republican Conference of Young Scientists in Mathematics and Mechanics (Baku, October 1987), Elm, Baku (1988), pp. 145–146.Google Scholar
  32. 32.
    H. M. Reimann, “Functions of bounded mean oscillation and quasiconformal mappings”, Comment. Math. Helv.,49, No. 2, 260–276 (1974).Google Scholar
  33. 33.
    J. Peetre and E. Swenson, “On the generalized Hardy's inequality of McGehee, Pigno and Smith and the problem of interpolation between BMO and a Besov space”, Math. Scand.,54, No. 2, 221–241 (1984).Google Scholar
  34. 34.
    L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton (1966).Google Scholar
  35. 35.
    J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin (1976).Google Scholar
  36. 36.
    P. I. Lizorkin, “Generalized Liouville differentiation and the multiplier method in the theory of imbeddings of differentiable functions”, Trudy MIAN SSSR,105, 89–167 (1969).Google Scholar
  37. 37.
    H. Dappa and W. Trebels, “On L1-criteria for quasiradial Fourier multipliers with applications to some anisotropic function spaces”, Anal. Math.,9, No. 4, 275–289 (1983).Google Scholar
  38. 38.
    H. Dappa and W. Trebels, “A difference quotient norm for anisotropic Bessel potential spaces”, Math. Nachr.,132, 163–174 (1986).Google Scholar
  39. 39.
    P. I. Lizorkin, “Description of the spacesL p(r)(R n) in terms of singular difference integrals”, Mat. Sb.,81, No. 1, 79–91 (1970).Google Scholar
  40. 40.
    A. A. Davtyan, “Spaces of anisotropic potentials”, Trudy Mat. Inst. Akad. Nauk SSSR,173, 113–124 (1986).Google Scholar
  41. 41.
    M. S. Alborova and S. K. Vodop'yanov, Removable singularities of solutions of quasi-eliptic equations. Novosibirsk State Univ., Novosibirsk (1987). (Manuscript deposited at VINITI, Feb. 4, 1987, No. 804-B87.)Google Scholar
  42. 42.
    P. I. Lizorkin, “(Lp, Lq)-multipliers of Fourier integrals”, Dokl. Akad. Nauk SSSR,152, No. 4, 808–811 (1963).Google Scholar
  43. 43.
    V. M. Gol'dshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings [in Russian], Nauka, Moscow (1983).Google Scholar
  44. 44.
    N. G. Meyers, “A theory of capacities for potentials of functions in Lebesgue classes”, Math. Scand.,26, No. 2, 255–292 (1970).Google Scholar
  45. 45.
    P. R. Halmos, Measure Theory, Van Nostrand, New York (1950).Google Scholar
  46. 46.
    V. G. Maz'ya, Sobolev Spaces [in Russian], Leningrad State Univ. (1985).Google Scholar
  47. 47.
    D. R. Adams, “Traces of potentials. I”, Indiana Univ. Math. J.,22, 907–918 (1973).Google Scholar
  48. 48.
    L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, Princeton (1967).Google Scholar
  49. 49.
    S. Vodop'janov, “Function spaces and quasiconformal mappings on homogeneous groups”, in: Third International Symposium on Complex Analysis and Its Applications (Herceg Novi, May 1988), Abstracts, Herceg Novi (1988), p. 36.Google Scholar
  50. 50.
    S. K. Vodop'yanov, “Function spaces and quasiconformal mappings on homogeneous groups”, in: All-Union Conference on the Geometric Theory of Functions (Novosibirsk, October 1988), Abstracts of Communications [in Russian], Novosibirsk (1988), p. 20.Google Scholar
  51. 51.
    S. K. Vodop'yanov, Taylor's Formula and Function Spaces [in Russian], Novosibirsk State Univ., Novosibirsk (1988).Google Scholar
  52. 52.
    V. G. Maz'ya and T. O. Shaposhnikova, Multipliers in Spaces of Differentiable Functions [in Russian], Leningrad State Univ. (1986).Google Scholar
  53. 53.
    S. P. Ponomarev, “Submersions and preimages of sets of measure zero”, Sib. Mat. Zh.,28, No. 1, 199–210 (1987).Google Scholar
  54. 54.
    P. W. Jones, “Quasiconformal mappings and extendability of functions in Sobolev spaces”, Acta Math.,147, 71–88 (1981).Google Scholar
  55. 55.
    B. L. Fain, “On the continuation of functions from anisotropic Sobolev spaces”, Trudy Mat. Inst. Akad. Nauk SSSR,170, 248–272 (1984).Google Scholar
  56. 56.
    P. A. Shvartsman, Extension theorems with the preservation of locally polynomial approximations. Yaroslavl' State Univ., Yaroslavl' (1986). (Manuscript deposited at VINITI, Sep. 4, 1986, No. 6457-B86.)Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • S. K. Vodop'yanov

There are no affiliations available

Personalised recommendations