Advertisement

Siberian Mathematical Journal

, Volume 34, Issue 1, pp 165–171 | Cite as

On mappings generating the embeddings of Sobolev spaces

  • A. D. Ukhlov
Article

Keywords

Sobolev Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K. Vodop'yanov, “Mappings on homogeneous groups and embeddings of functional spaces,” Sibirsk. Mat. Zh.,30, No. 5, 25–41 (1989).Google Scholar
  2. 2.
    S. K. Vodop'yanov, “Weighted Sobolev spaces and the theory of functions,” in: Abstracts: First All-Union School on Potential Theory [in Russian], Inst. Math., Kiev (1991).Google Scholar
  3. 3.
    V. I. Kruglikov, “Capacities of condensers and space mappings quasiconformal in mean,” Mat. Sb.,130, No. 2, 185–206 (1986).Google Scholar
  4. 4.
    V. M. Gol'dshteîn and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings [in Russian], Nauka, Moscow (1983).Google Scholar
  5. 5.
    S. K. Vodop'yanov and V. M. Gol'dshteîn, “Criteria for removability of sets for the spacesL p1, quasiconformal and quasi-isometric mappings,” Sibirsk. Mat. Zh.,18, No. 1, 48–68 (1977).Google Scholar
  6. 6.
    O. Martio, S. Rickman, and J. Väisälä, “Definitions for quasiregular mappings,” Ann. Acad. Sci Fenn. Ser. A I Math., No. 448, 1–40 (1969).Google Scholar
  7. 7.
    P. Hajlasz, Change-of-Variables Formula Under the Minimal Assumptions, [Preprint] Inst. Math., Warsaw (1991).Google Scholar
  8. 8.
    S. Saks, The Theory of Integral [Russian translation], Izdat. Inostr. Lit., Moscow (1949).Google Scholar
  9. 9.
    V. G. Maz'ya, Sobolev Spaces [in Russian], Leningrad. Univ., Leningrad (1985).Google Scholar
  10. 10.
    F. W. Gehring, “Lipschitz mapping andp-capacity of rings inn-space,” in: Advance in the Theory of Riemann Surfaces, Proc. Conference, Stony Brook, New York, 1969, Univ. Press. Princenton: New York, 1971, pp. 175–193.Google Scholar
  11. 11.
    J. Väisälä, Lectures onn-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. D. Ukhlov

There are no affiliations available

Personalised recommendations