Advertisement

Siberian Mathematical Journal

, Volume 34, Issue 1, pp 150–164 | Cite as

The central and secondary link problems for an equation and a second rank system

  • V. R. Smilyanskiî
Article
  • 18 Downloads

Keywords

Rank System Secondary Link Link Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations [Russian translation], Izdat. Inostr. Lit., Moscow (1958).Google Scholar
  2. 2.
    V. P. Gurariî and V. I. Matsaev, “Stokes' multipliers for systems of linear ordinary differential equations of first order,” Dokl. Akad. Nauk SSSR,280, No. 2, 272–276 (1985).Google Scholar
  3. 3.
    È. L. Aîns, Ordinary Differential Equations [in Russian], Khar'kov (1939).Google Scholar
  4. 4.
    E. Kamke, Reference Book on Ordinary Differential Equations [Russian translation], Fizmatgiz, Moscow (1961).Google Scholar
  5. 5.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. Vol. 2 [Russian translation], Fizmatgiz, Moscow (1963).Google Scholar
  6. 6.
    A. Kratzer and W. Franz, Transzendente Funktionen [Russian translation], Izdat. Inostr. Lit., Moscow (1963).Google Scholar
  7. 7.
    M. A. Evgrafov, Analytic Functions [in Russian], Nauka, Moscow (1968).Google Scholar
  8. 8.
    A. R. Forsyth, Theory of Differential Equations. Vol. III. Ordinary, Linear Equations Vol. IV, Cambridge University, Cambridge (1902).Google Scholar
  9. 9.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions. Bessel Functions. The Parabolic Cylinder Functions, Orthogonal Polynomials [Russian translation], Nauka, Moscow (1966).Google Scholar
  10. 10.
    A. I. Markushevich, Theory of Analytic, Functions. Vol. 2 [in Russian], Nauka, Moscow (1968).Google Scholar
  11. 11.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions. Hypergeometric Function. The Legandre Function [Russian translation], Nauka, Moscow (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. R. Smilyanskiî

There are no affiliations available

Personalised recommendations