Advertisement

Siberian Mathematical Journal

, Volume 34, Issue 1, pp 128–138 | Cite as

On existence of a global solution to the initial-boundary value problem for the Boltzmann equation

  • A. Sakabekov
Article
  • 25 Downloads

Keywords

Boltzmann Equation Global Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Cercignani, The Theory and Application of the Boltzmann Equation [in Russian], Mir, Moscow (1978).Google Scholar
  2. 2.
    M. N. Kogan, Rarified Gas Dynamics [in Russian], Nauka, Moscow (1967).Google Scholar
  3. 3.
    N. B. Maslova, “Theorems on existence and uniqueness of a solution to the Boltzmann equation,” Itogi Nauki i Tekhniki. Sovrem. Probl. Mat. Fund. Naprav., VINITI,2, Moscow (1985).Google Scholar
  4. 4.
    Nonequilibrium Phenomena: The Boltzmann Equation [in Russian], Mir, Moscow (1986).Google Scholar
  5. 5.
    K. Hamdace, “Problems aux limities pour l'equation de Boltzmann existence globale de solutions,” Comm. Partial Differential Equations,13, No. 7, 813–845 (1988).Google Scholar
  6. 6.
    H. Grad, Thermodynamics of Gases [Russian translation], Mir, Moscow (1970).Google Scholar
  7. 7.
    A. Ya. Povzner, “On the Boltzmann equation in kinetic gas theory,” Mat. Sb.,58, No. 1, 65–86 (1962).Google Scholar
  8. 8.
    D. Morgenstern, J. Ration. Mech. Anal.,4, 533–555 (1955).Google Scholar
  9. 9.
    S. Ukai, “Global solutions of the Boltzmann equation in a whole space,” C. R. Acad. Sci. Paris Ser. A.282, No. 6, 317–320 (1976).Google Scholar
  10. 10.
    S. Ukai, “On the existence of global solution of mixed problem for nonlinear Boltzmann equation,” Proc. Japan Acad. Ser. A Math. Sci.50, No. 3, 179–184 (1974).Google Scholar
  11. 11.
    N. B. Maslova and A. N. Firsov, “Solving the Cauchy problem for the Boltzmann equation. An existence and uniqueness theorem,” Vestnik Leningrad. Univ., No. 19, 83–88 (1975).Google Scholar
  12. 12.
    G. Toscani, “New results on the Boltzmann equation in unbounded domains,” Transport Theory and Statist. Phys.,16, No. 2, 223–230 (1987).Google Scholar
  13. 13.
    R. J. Di Perna and J.-L. Lions, “Solutions globales de l'equation de Boltzmann,” C. R. Acad. Sci. Paris Ser. A.,306, 343–346 (1988).Google Scholar
  14. 14.
    V. A. Galkin, “Functional solutions of conservation laws,” Dokl. Akad. Nauk SSSR,310, No. 4, 834–839 (1990).Google Scholar
  15. 15.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).Google Scholar
  16. 16.
    M. A. Krasnosel'skiî, Topological Methods in the Theory of Nonlinear Integral Equations [in Russian], Nauka, Moscow (1956).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. Sakabekov

There are no affiliations available

Personalised recommendations