Siberian Mathematical Journal

, Volume 34, Issue 1, pp 59–72 | Cite as

A continuous linear right inverse of the representation operator and applications to the convolution operators

  • Yu. F. Korobeînik
  • S. N. Melikhov


Representation Operator Convolution Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. F. Korobeînik, “Representing systems,” Uspekhi Mat. Nauk,36, No. 1, 73–126 (1981).Google Scholar
  2. 2.
    Yu. F. Korobeînik, “Convolution equations over a complex domain,” Mat. Sb.,127, No. 2, 175–196 (1985).Google Scholar
  3. 3.
    D. Vogt, Operators Between Fréchet Spaces [Preprint], Wuppertal (1990).Google Scholar
  4. 4.
    S. Momm, “Convex univalent functions and continuous linear right inverses,” J. Funct. Anal.,103, No. 1, 85–103 (1992).Google Scholar
  5. 5.
    Yu. F. Korobeînik, “On solutions to some functional equations in classes of analytic functions on convex domains,” Mat. Sb.,75, No. 2, 225–234 (1968).Google Scholar
  6. 6.
    Yu. F. Korobeînik, “On solutions to an infinite order differential equation which are analytic in noncircular domains,” Mat. Sb.,71, No. 4, 535–544 (1966).Google Scholar
  7. 7.
    O. V. Epifanov, “To the question on epimorphism of convolution operator in convex domains,” Mat. Zametki,16, No. 3, 415–422 (1974).Google Scholar
  8. 8.
    G. M. Goluzin, Geometric Function Theory [in Russian], Nauka, Moscow (1966).Google Scholar
  9. 9.
    B. Ya. Levin, Distribution of Zeros of Entire Functions [in Russian], Nauka, Moscow (1966).Google Scholar
  10. 10.
    V. P. Zakharjuta, “On the isomorphism of Cartesian products of locally convex spaces,” Studia Math.,46, 210–221 (1973).Google Scholar
  11. 11.
    A. F. Leontiev, Series of Exponentials [in Russian], Nauka, Moscow (1976).Google Scholar
  12. 12.
    I. F. Krasitchkov-Ternivskiî, “A geometric lemma useful in the theory of entire functions and theorems of Levinson type,” Mat. Zametki,24, No. 4, 531–546 (1978).Google Scholar
  13. 13.
    Yu. F. Korobeînik, Shift Operators on Numerical Families [in Russian], Izdat. Rostov. Univ., Rostov-na-Donu (1983).Google Scholar
  14. 14.
    R. E. Edwards, Functional Analysis. Theory and Applications [Russian translation], Mir, Moscow (1969).Google Scholar
  15. 15.
    M. Langenbruch, “Solution Operators for Partial Differential Equations in Weighted Gevrey Spaces,” Michigan Math. J.,37, 3–24 (1990).Google Scholar
  16. 16.
    A. V. Abanin, “On some tests for weak sufficiency,” Mat. Zametki,40, No. 4, 442–454 (1986).Google Scholar
  17. 17.
    E. Dubinsky, Nonlinear Analysis in Different Kinds of Fréchet Spaces [Preprint], Potsdam, New York (1982).Google Scholar
  18. 18.
    C. Pommerenke, Univalent Functions, Vandenhoek and Ruprecht, Göttingen (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Yu. F. Korobeînik
  • S. N. Melikhov

There are no affiliations available

Personalised recommendations