Siberian Mathematical Journal

, Volume 34, Issue 1, pp 1–9 | Cite as

Products and vector bundles within the category ofG-supermanifolds

  • C. Bartocci
  • U. Bruzzo
  • D. Hernández Ruipérez


Vector Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bartocci, U. Bruzzo, and D. Hernández Ruipérez, The Geometry of Supermanifolds, Kluwer Acad. Publ., Dordrecht (1991).Google Scholar
  2. 2.
    Yu. I. Manin, Gauge Fields and Complex Geometry [in Russian], Nauka, Moscow (1984).Google Scholar
  3. 3.
    M. Rothstein, “The axioms of supermanifolds and a new structure arising from them,” Trans. Amer. Math. Soc.,297, No. 1, 159–180 (1986).Google Scholar
  4. 4.
    C. Bartocci and U. Bruzzo, “Some remarks on the differential-geometric approach to supermanifolds,” J. Geom. Phys.,4, 391–404 (1987).Google Scholar
  5. 5.
    C. Bartocci, Elementi di Geometria Globale delle Supervarietá, Ph. D. Thesis, Univ. of Genova (1990).Google Scholar
  6. 6.
    B. Kostant, “Graded manifolds, graded Lie theory, and prequantization. Differential geometric methods in mathematical physics,” in: Lecture Notes in Math.,570, Springer, New York, 1977, pp. 177–306.Google Scholar
  7. 7.
    D. Hernández Ruipérez and J. Masque Muñoz, “Global variational calculus on graded manifolds. I: Graded jet bundles, structure 1-form and graded infinitesimal contact transformations,” J. Math. Pures Appl.,63, 283–309 (1984).Google Scholar
  8. 8.
    A. Grothendieck, “Produits tensoriels topologiqes et espaces nucléaires,” Mem. Amer. Math. Soc.,16 (1955)Google Scholar
  9. 9.
    A. Rogers, “Graded manifolds, supermanifolds and infinite-dimensional Grassmann algebras,” Comm. Math. Phys.,105, 375–384 (1986).Google Scholar
  10. 10.
    B. S. De Witt, Supermanifolds, Cambridge University Press, London (1984).Google Scholar
  11. 11.
    M. Batchelor, “Two approaches to supermanifolds,” Trans. Amer. Math. Soc.,258, 257–270 (1980).Google Scholar
  12. 12.
    A. Rogers, “A global theory of supermanifolds,” J. Math. Phys.,21, 1352–1365 (1980).Google Scholar
  13. 13.
    A. Grothendieck and J. Dieudonné, Eléments de Géometrie Algébrique. I (Grundlehren Math. Wiss.,166), Springer, New York (1971).Google Scholar
  14. 14.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. 1, Interscience, New York (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • C. Bartocci
  • U. Bruzzo
  • D. Hernández Ruipérez

There are no affiliations available

Personalised recommendations