Skip to main content
Log in

Estimates for derivatives of solutions to differential equations with boundary and interior layers

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. N. S. Bakhvalov, “On optimisation of methods for solving boundary value problems in the pressence of a boundary layer,” Zh. Vychisl. Mat. i Mat. Fiz.,9, No. 4, 841–859 (1969).

    Google Scholar 

  2. V. D. Liseîkin and V. E. Petrenko, “On numerical solution of nonlinear singularly perturbed problems,” Dokl. Akad. Nauk SSSR,297, No. 4, 791–794 (1987).

    Google Scholar 

  3. B. M. Bagaev, “The Galërkin method for an ordinary differential equation with a small parameter,” Chyslennye Metody Mekhaniki Sploshnoî Sredy,10, No. 1, 5–16 (1979).

    Google Scholar 

  4. N. A. Blatov, “Convergence in uniform norm of the Galërkin method for a nonlinear singular perturbed problem,” Zh. Vychisl. Mat. i Mat. Fiz.,26, No. 8, 1175–1188 (1986).

    Google Scholar 

  5. V. D. Liseîkin, “On numerical solution of equations with polynomial boundary layer,” Zh. Vychisl. Mat. i Mat. Fiz.,26, No. 12, 1813–1820 (1986).

    Google Scholar 

  6. T. C. Hanks, “A model relating heat-flow values near and vertical velocities of mass transport beneath oceanic rises,” J. Geophys. Res.,76, No. 2, 537–544 (1971).

    Google Scholar 

  7. S. B. Angenent, L. A. Mallet-Paret, and L. A. Peletier, “Stable transition layer in a semilinear boundary value problem,” J. Differential Equations,67, 212–242 (1987).

    Google Scholar 

  8. P. Ya. Polubarinova-Kochina, Theory of Motion of Phreatic Water [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  9. K. K. Zamaraev, P. F. Khaîrutdinov, and V. P. Zhdanov, Electron Tunneling in Chemistry. Chemical Reactions at Large Distances [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  10. N. N. Brish, “On boundary value problems for the equation εy=f(y,y ,x) with ε small,” Dokl. Akad. Nauk SSSR,155, No. 3, 429–432 (1954).

    Google Scholar 

  11. V. D. Liseîkin, “On numerical solution of a singularly perturbed turning point equation,” Zh. Vychisl. Mat. i Mat. Fiz.,24, No. 12, 1812–1818 (1984).

    Google Scholar 

  12. F. E. Berger, H. Han, and R. B. Kellog, “A priori estimates of a numerical method for a turning point problem,” Math. Comp.,42, 465–492 (1984).

    Google Scholar 

  13. A. E. Berger, “A note concerning the El-Mistikawi-Werle exponential finite difference scheme for a boundary turning point problem,” in: Proc. Third International Conference on Boundary and Interior Layers, Dublin, 1984, pp. 67–80.

  14. A. A. Dorodnitsyn, “Asymptotic laws of the distribution of eigenvalues for some particular types of the second order differential equations,” Uspekhi Mat. Nauk,7, No. 6, 3–96 (1952).

    Google Scholar 

  15. M. A. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentis Hall, Eglewood Cliffs (1967).

    Google Scholar 

  16. V. D. Liseîkin and V. E. Petrenko, An Adaptive-Invariant Method for Numerical Solution of Problems with Boundary and Interior Layers, Novosibirsk (1989).

Download references

Authors

Additional information

Novosibirsk. Translated fromSibirskiî Matematicheskiî Zhurnal, Vol. 33, No. 6, pp. 106–117, November–December, 1992.

Translated by T. N. Rozhkovskaya

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liseîkin, V.D. Estimates for derivatives of solutions to differential equations with boundary and interior layers. Sib Math J 33, 1039–1051 (1992). https://doi.org/10.1007/BF00971027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00971027

Keywords

Navigation