Siberian Mathematical Journal

, Volume 33, Issue 5, pp 878–890 | Cite as

Generators for the automorphism groups of free metabelian pro-p-groups

  • V. A. Roman'kov


Automorphism Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Lubotzky, “Combinatorial group theory for pro-p-groups,” J. Pure Appl. Algebra,25., 311–325 (1982).Google Scholar
  2. 2.
    D. Gildenhuys, W. Herfort, and L. Ribes, “Profinite Frobenius groups,” Arch. Math.,33, 518–528 (1979).Google Scholar
  3. 3.
    W. Herfort and L. Ribes, “On automorphisms of free pro-p-groups I,” Proc. Amer. Math. Soc.,108, No. 2, 287–295 (1990).Google Scholar
  4. 4.
    A. V. Goryaga, “On generators for the automorphism group of a free nilpotent group,” Algebra i Logika,15, No. 4, 458–463 (1976).Google Scholar
  5. 5.
    S. Andreadakis, “Generators for AutG, G free nilpotent,” Arch. Math.,42, 296–300 (1984).Google Scholar
  6. 6.
    R. M. Bryant and C. K. Gupta, “Automorphism groups of free nilpotent groups,” Arch. Math.,52, 313–320 (1989).Google Scholar
  7. 7.
    S. Andreadakis and C. K. Gupta, “Automorphism groups of free metabelian nilpotent, groups,” Algebra i Logika,30 (1991).Google Scholar
  8. 8.
    V. N. Remeslennikov, “Embedding theorems for profinite groups,” Izv. Akad. Nauk SSSR Ser. Mat.,43, No. 2, 399–417 (1979).Google Scholar
  9. 9.
    S. Bachmuth, “Automorphisms of free metabelian groups,” Trans. Amer. Math. Soc.,118, 93–104 (1965).Google Scholar
  10. 10.
    N. Gupta, “Free group rings,” Contemp. Math.,66 (1987).Google Scholar
  11. 11.
    O. V. Mel'nikov, V. N. Remeslennikov, V. A. Roman'kov, L. A. Skornyakov, and I. P. Shestakov, General Algebra. I [in Russian], Nauka, Moscow (1990).Google Scholar
  12. 12.
    V. A. Artamonov, “Projective metabelian groups and Lie algebras,” Izv. Akad. Nauk SSSR Ser. Mat.,42, No. 2, 226–236 (1978).Google Scholar
  13. 13.
    P. Straud, Ph. D. Thesis, Cambridge (1965).Google Scholar
  14. 14.
    V. A. Roman'kov, “On width of verbal subgroups of soluble groups,” Algebra i Logika,21, No. 1, 60–72 (1982).Google Scholar
  15. 15.
    H. Neumann, Varieties of Groups, Springer-Verlag (1967).Google Scholar
  16. 16.
    J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic Pro-p-Groups, London Lect. Note Ser.,157, Cambridge (1991).Google Scholar
  17. 17.
    S. Bachmuth and H. Y. Mochizuki, “Aut (F) → Aut (F/F′') is surjective for the free groupF of rankn≥4,” Trans. Amer. Math. Soc.,292, 81–101 (1985).Google Scholar
  18. 18.
    V. A. Roman'kov, “Automorphism groups of free metabelian groups,” in: Questions About Interrelation Between Pure and Applied Algebras [in Russian], Novosibirsk (1985).Google Scholar
  19. 19.
    S. Bachmuth, “Induced automorphisms of free groups and free metabelian groups,” Trans. Amer. Math. Soc.,122, 1–17 (1966).Google Scholar
  20. 20.
    O. Chein, “IA-automorphisms of free and free metabelian groups,” Comm. Pure Appl. Math.21, 605–629 (1968).Google Scholar
  21. 21.
    S. Bachmuth and H. Y. Mochizuki, “The non-finite generation of Aut (G),G free metabelian of rank 3,” Trans. Amer. Math. Soc.,270, 693–700 (1982).Google Scholar
  22. 22.
    A. Weil, Basic Number Theory [Russian translation], Mir, Moscow (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. A. Roman'kov

There are no affiliations available

Personalised recommendations