Siberian Mathematical Journal

, Volume 33, Issue 5, pp 862–877 | Cite as

Compact standard periodic einstein manifolds

  • E. D. Rodionov


Einstein Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Besse, Einstein Manifolds, Springer, Berlin (1987).Google Scholar
  2. 2.
    M. Wang and W. Ziller, “On normal homogeneous Einstein manifolds,” Ann. Sci. École Norm. Sup. (4),18, 563–633 (1985).Google Scholar
  3. 3.
    V. I. Marmazeev, “Riemannian natural reductive spaces with regular multiplication,” in: Abstracts: Proc. Nineth All-Union on Geometry [in Russian], Kishinev. September, 1988, p. 204.Google Scholar
  4. 4.
    V. I. Marmazeev, “Decomposition of spaces with regular multiplication” submitted to VINITI (1989), No. 8715-B.Google Scholar
  5. 5.
    A. B. Fedenko, Spaces with Symmetry, Belorussian University, Minsk (1977).Google Scholar
  6. 6.
    E. Cartan Geometry of Lie Groups and Symmetric Spaces [Russian translation], Izdat. Inostr. Lit., Moscow (1949).Google Scholar
  7. 7.
    J. Wolf, “The geometry and structure of isotropy irreducible homogeneous spaces,” Acta Math.,120, 59–148 (1968).Google Scholar
  8. 8.
    O. V. Manturov, “Homogeneous Riemannian spaces with an irreducible group of rotations,” in: Trudy Seminara po Vektornomu, i Tenzornomu Analizu, iss. 13, Moscow University, Moscow (1966), pp. 68–145.Google Scholar
  9. 9.
    E. B. Dynkin, “Semisimple subalgebras of semisimple Lie algebras,” Mat. Sb.,30, No. 2, 349–462 (1952).Google Scholar
  10. 10.
    E. B. Dynkin, “Maximal subgroups of classical groups,” Trudy Moskov. Mat. Obshch.,1, 39–166 (1952).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • E. D. Rodionov

There are no affiliations available

Personalised recommendations