Siberian Mathematical Journal

, Volume 33, Issue 5, pp 835–841 | Cite as

On the harnack inequality for the equation formally adjoint to a linear elliptic differential equation

  • F. I. Mamedov


Differential Equation Harnack Inequality Elliptic Differential Equation Linear Elliptic Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Serrin, “On the Harnack inequality for linear elliptic equations,” J. Analyse Math.,4, No. 2, 292–308 (1855).Google Scholar
  2. 2.
    E. M. Landis, Second Order Equations of Elliptic and Parabolic Type [in Russian], Nauka, Moscow (1971).Google Scholar
  3. 3.
    H. O. Cordes, “Die erste Randvertaufgabe bei differentialgleichungen zweiter Ordnang in mehr als zwei Variablen,” Math. Ann.,131, No. 3, 278–318 (1965).Google Scholar
  4. 4.
    N. V. Krylov and M. V. Safonov, “Some property of solutions to parabolic equations with measurable coefficients,” Izv. Akad. Nauk SSSR Ser. Mat.,40, 161–175 (1980).Google Scholar
  5. 5.
    A. A. Novruzov, “One approach to studying qualitative properties of solutions to nondivergence elliptic equations of second order,” Mat. Sb.,122, No. 3, 360–371 (1983).Google Scholar
  6. 6.
    K. Miranda, Partial Differential Equations of Elliptic Type [Russian translation], Izdat. Inostr. Lit., Moscow (1957).Google Scholar
  7. 7.
    V. G. Maz'ya, Sobolev Spaces [in Russian], Leningrad State Univ., Leningrad (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • F. I. Mamedov

There are no affiliations available

Personalised recommendations