Siberian Mathematical Journal

, Volume 33, Issue 5, pp 760–783 | Cite as

Independent enumerations of theories and recursive progressions

  • L. D. Beklemishev


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Solovay, “Provability interpretations of modal logic,” Israel J. Math.,25, 287–304 (1976).Google Scholar
  2. 2.
    A. Visser, “Provability logics of recursively enumerable theories,” J. Philos. Logic,13, 97–113 (1984).Google Scholar
  3. 3.
    S. N. Artemov, “On modal logics axiomatizing provability,” Izv. Akad. Nauk SSSR, Ser. Mat.,49, No. 6, 1123–1154 (1985).Google Scholar
  4. 4.
    L. D. Beklemishev, “On a classification of propositional provability logics,” Izv. Akad. Nauk SSSR, Ser. Mat.,53, No. 5915-943 (1989).Google Scholar
  5. 5.
    S. Feferman, “Arithmetization of metamathematics in a general setting,” Fund. Math.,49, 35–92 (1960).Google Scholar
  6. 6.
    S. Feferman, “Transfinite recursive progressions of axiomatizable theories,” [Russian translation], in: Mathematics,15, No. 5, 84–139 (1971).Google Scholar
  7. 7.
    T. Carlson, “Modal logics with several operators and provability interpretations,” Israel J. Math.,54, 14–24 (1986).Google Scholar
  8. 8.
    K. Smoryński, “The incompleteness theorems,” in: Handbook of Mathematical Logic, North-Holland, Amsterdam etc., 1978, pp. 821–866.Google Scholar
  9. 9.
    L. D. Beklemishev, “Provability logics for natural Turing progressions,” Studia Logica,51, 107–128 (1991).Google Scholar
  10. 10.
    L. D. Beklemishev, “Polymodal representations of a Turing progression,” in: Abstracts 9th All-Union Conference on Math. Logic [in Russian], Leningrad 1988, p. 15.Google Scholar
  11. 11.
    C. Smoryński, Self-Reference and Modal Logic, Springer, Berlin (1985).Google Scholar
  12. 12.
    F. Montagna, “Provability in finite subtheories of PA,” J. Symbolic Logic,52, No. 2, 494–511 (1987).Google Scholar
  13. 13.
    S. N. Artemov, “Arithmetically complete modal theories,” Semiotics and Informatics [in Russian], Moscow, VINITI,14, 115–133 (1980).Google Scholar
  14. 14.
    C. Smoryński, “Calculating self-referential statements,” Fund. Math.,109, 189–210 (1980).Google Scholar
  15. 15.
    P. Hájek, “Arithmetical interpretations of dynamic logic,” J. Symbolic Logic,48, No. 3, 704–713 (1983).Google Scholar
  16. 16.
    S. N. Artemov, “Applications of modal logic to proof theory,” in: Nonclassical Logics and Their Applications. Questions of Cybernetics, Nauka, Moscow 1982, pp. 3–22.Google Scholar
  17. 17.
    A. Visser, A Course in Bimodal Provability Logic, Logic Group Preprint Series N 20, 1987, Department of Philosophy, University of Utrecht, Heidelberglaan 2, 3584CS Utrecht (1987).Google Scholar
  18. 18.
    M. Hájková, “The lattice of binumerations of arithmetic I,” Comment. Math. Univ. Carolin.,12, 81–104 (1971).Google Scholar
  19. 19.
    M. Hájková, “The lattice of binumerations of arithmetic. II,” Comment. Math. Univ. Carolin.,12, 281–306 (1971).Google Scholar
  20. 20.
    C. Bennet, On Some Orderings of Extensions of Arithmetic, Ph. D. Thesis, Department of Philosophy, University of Göteborg, Göteborg (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • L. D. Beklemishev

There are no affiliations available

Personalised recommendations