Siberian Mathematical Journal

, Volume 30, Issue 6, pp 980–993 | Cite as

Structure of groups of rational points of classical algebraic groups over number fields

  • V. P. Platonov
  • A. S. Rapinchuk


Rational Point Algebraic Group Number Field Classical Algebraic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. Dieudonne, Geometry of the Classical Groups [Russian translation], Mir, Moscow (1974).Google Scholar
  2. 2.
    V. P. Platonov, “Dieudonne's conjecture and the nonsurjectivity of coverings of algebraic groups by k-points,” Dokl. Akad. Nauk SSSR,216, No. 5, pp. 986–989 (1974).Google Scholar
  3. 3.
    J. Tits, “Algebraic and abstract simple groups,” Ann. Math.,80, No. 2, 313–329 (1964).Google Scholar
  4. 4.
    C. Chevalley, “Sur certains groupes simples,” Tohoku Math. J.,7, No. 1, 14–66 (1955).Google Scholar
  5. 5.
    R. Steinberg, “Variations on a theme of Chevalley,“ Pacific J. Math.,9, No. 3, 875–891 (1959).Google Scholar
  6. 6.
    V. P. Platonov, “The problem of strong approxiamtion and the Kneser-Tits conjecture for algebraic groups,” Izv. Akad. Nauk SSSR. Ser. Mat.,32, No. 6, 1211–1219 (1969).Google Scholar
  7. 7.
    V. P. Platonov, “On the Tannaka-Artin problem,” Dokl. Akad. Nauk SSSR,221, No. 5, 1038–1041 (1975).Google Scholar
  8. 8.
    V. P. Platonov, “The Tannaka-Artin problem and reduced K-theory,” Izv. Akad. Nauk SSSR, Ser. Mat.,40, No. 2, 227–216 (1976).Google Scholar
  9. 9.
    V. P. Platonov, “Reduced K-theory and approximation in algebraic groups,” Tr. Mat. Inst. Akad. Nauk SSSR,142, 198–207 (1976).Google Scholar
  10. 10.
    V. P. Platonov, “Infinity of the reduced Whitehead group in the Tannaka-Artin problem,” Mat. Sb.,100, No. 2, 191–200 (1976).Google Scholar
  11. 11.
    V. P. Platonov, “Birational properties of the reduced Whitehead group,” Dokl. Akad. Nauk BSSR,21, No. 3, 197–198 (1977).Google Scholar
  12. 12.
    V. P. Platonov, “Algebraic groups and reduced K-theory,” in: Proc. Int. Congr. Math., Helsinki, Vol. 1 (1980), pp. 311–317.Google Scholar
  13. 13.
    J. Tits, “Groupes de Whitehead de groupes algebriques simples sur un corps (d'apres V. P. Platonov, et al.), “Lect. Notes Math.,677, 218–236 (1978).Google Scholar
  14. 14.
    P. Draxl and M. Kneser, “SK1 von Schiefkörpern, ”Lect. Notes Math.,778 (1980).Google Scholar
  15. 15.
    V. P. Platonov, “Arithmetic and structural problems in linear algebraic groups,” in: Proc. Int. Cong. Math., Vancouver, 1974, Vol. 1 (1975), pp. 471–476.Google Scholar
  16. 16.
    M. Kneser, “Galois-Kohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern. II,” Math. Z.,89, No. 3, 250–272 (1965).Google Scholar
  17. 17.
    G. A. Margulis, “Finiteness of quotient-groups of discrete groups,” Funkts. Analiz Prilozhen.,13, No. 3, 28–39 (1979).Google Scholar
  18. 18.
    M. Kneser, “Orthogonale Gruppen über algebraischen Zahlkörpern,” J. Reine Angew. Math.,196, No. 3/4 (1956).Google Scholar
  19. 19.
    V. P. Platonov and A. S. Rapinchuk, “Group of rational points of three-dimensional groups,” Dokl. Akad. Nauk SSSR,247, No. 2, 279–282 (1979).Google Scholar
  20. 20.
    G. A. Margulis, “Multiplicative group of the algebra of quaternions over a global field,” Dokl. Akad. Nauk SSSR,252, No. 3, 542–546 (1980).Google Scholar
  21. 21.
    V. P. Platonov and A. S. Rapinchuk, “Multiplicative structure of skew fields over number fields and the Hasse norm principle,” Tr. Mat. Inst. AN SSSR,165, 171–187 (1984).Google Scholar
  22. 22.
    M. S. Raghunathan, “On the group of norm 1 elements in a division algebra,” Math. Ann.,279, No. 3, 457–484 (1988).Google Scholar
  23. 23.
    G. M. Tomanov, “Sur la structure des groupes algebriques simples de type Dn definis sur des corps de nombres,” C. R. Acad. Sci.,306, Ser. 1, No. 15, 647–650 (1988).Google Scholar
  24. 24.
    M. V. Borovoi, “Abstract simplicity of groups of type Dn over number fields,” Usp. Mat. Nauk,43, No. 5, 179–180 (1988).Google Scholar
  25. 25.
    M. V. Borovoi, “Abstract simplicity of some simple anisotropic algebraic groups over number fields,” Dokl. Akad. Nauk SSSR,283, No. 4, 794–797 (1985).Google Scholar
  26. 26.
    V. P. Chernousov, “Structure of groups of rational points of algebraic groups of type Dt,” Dokl. Akad. Nauk BSSR,31, No. 7, 593–596 (1987).Google Scholar
  27. 27.
    A. Albert, Structure of Algebras, Am. Math. Soc. Colloq. Publ., New York (1939).Google Scholar
  28. 28.
    N. Bourbaki, Algebra (Modules, Rings, Forms), Addison-Wesley, MA (1973).Google Scholar
  29. 29.
    N. Bourbaki, Lie Groups and Algebras [Russian translation], Mir, Moscow (1978), Chapters VII, VIII.Google Scholar
  30. 30.
    A. Weil, “Algebras with involutions and classical groups,” Matematika,7, No. 4, 31–35 (1963).Google Scholar
  31. 32.
    J.-P. Serre, Galois Cohomology [Russian translation], Mir, Moscow (1968).Google Scholar
  32. 33.
    W. Scharlau, Quadratic and Hermitian Forms, Springer, Berlin; Heidelberg; New York (1985).Google Scholar
  33. 34.
    G. Harder, “Uber die Galoiskohomologie halbeinfacher Matrizengruppen. II,” Math. Z.,92, No. 5, 396–415 (1966).Google Scholar
  34. 35.
    A. Weil, Basic Number Theory, Springer-Verlag, New York (1973).Google Scholar
  35. 36.
    I. R. Shafarevich, Foundations of Algebraic Geometry [in Russian], Nauka, Moscow (1972).Google Scholar
  36. 37.
    E. Cartan, “Sur certaines formes riemanniennes remarquable des geometries de groupe fondamental simple,” Ann. Sci. Ecole Norm. Super.,44, 345–467 (1927).Google Scholar
  37. 38.
    J.-P. Serre, Lie Algebras and Lie Groups [Russian translation], Mir, Moscow (1970).Google Scholar
  38. 38.
    V. P. Platonov, “Arithmetic theory of algebraic groups,” Usp. Mat. Nauk,37, No. 3, 3–54 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. P. Platonov
  • A. S. Rapinchuk

There are no affiliations available

Personalised recommendations