Siberian Mathematical Journal

, Volume 30, Issue 6, pp 935–944 | Cite as

Continuum of normal extensions of the modal logic of provability with the interpolation property

  • L. L. Maksimova


Modal Logic Interpolation Property Normal Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. Gabbay, “Craig's interpolation theorem for modal logics,” in: Conference in Mathematical Logic—London '70, Springer Verlag, Berlin (1972), pp. 111–127.Google Scholar
  2. 2.
    C. Smorynski, “Beth's theorem and self-referential sentences,” in: Logic Colloquium '77, North-Holland, Amsterdam (1978), pp. 253–261.Google Scholar
  3. 3.
    L. L. Maksimova, “Interpolation theorems in modal logics and amalgamable varieties of topological Boolean algebras,” Algebra Logika,18, No. 3, 556–586 (1979).Google Scholar
  4. 4.
    K. Fine, “Failures of the interpolation lemma in quantified modal logic,” J. Symbol. Log.,44, No. 2, 201–206 (1979).Google Scholar
  5. 5.
    W. Rautenber, “Modal tableau calculi and interpolation,” J. Philo. Log.,12, 403–423 (1985).Google Scholar
  6. 6.
    L. L. Maksimova, “On the interpolation in normal modal logics,” in: Nonclassical Logics [in Russian], Shtiintsa, Kishinev (1987), pp. 40–56.Google Scholar
  7. 7.
    R. Solovay, “Provability interpretation of modal logic,” Isr. J. Math.,25, No. 3/4, 287–304 (1976).Google Scholar
  8. 8.
    L. L. Maksimova, Theorems on Definability in Normal Extensions of the Logic of Provability [in Russian], Preprint No. 9, Sib. Otd. Inst. Mat. Akad. Nauk SSSR, Novosibirsk (1988).Google Scholar
  9. 9.
    J. Czelakowski, “Logical matrices and the amalgamation property,” Stud. Log.,41, No. 4, 329–341 (1982).Google Scholar
  10. 10.
    W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory and proof theory,” J. Symbol. Log.,22, 269–285 (1957).Google Scholar
  11. 11.
    R. Magari, “Representation and duality theory for diagonalizable algebras,” Stud. Log.,34, No. 4, 305–313 (1975).Google Scholar
  12. 12.
    K. Segerberg, An Essay in Classical Modal Logic, Upsala (1971).Google Scholar
  13. 13.
    L. L. Maksimova, “Interpolation theorems in modal logics. Sufficient conditions,” Algebra Logika,19, No. 2, 194–213 (1980).Google Scholar
  14. 14.
    L. L. Maksimova, “On interpolation in modal logics containing S4,” in: 7th International Congress of Logic, Methodology and Philos. Sci.: Abstracts, Vol. 1, Salzburg (1983), pp. 84–87.Google Scholar
  15. 15.
    L. L. Maksimova, “Interpolation in infinite-layered extensions of the logic of provability,” Algebra Logika,27, No. 5, 581–603 (1988).Google Scholar
  16. 16.
    W. J. Block, “Pretabular varieties of modal algebras,” in: Stud. Log.,30, No. 2/3, 101–124 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • L. L. Maksimova

There are no affiliations available

Personalised recommendations