Siberian Mathematical Journal

, Volume 30, Issue 6, pp 903–914 | Cite as

On subrings of free rings

  • G. V. Kryazhovskikh
  • G. P. Kukin


Free Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. G. Kurosh, “Nonassociative free algebras and free products of algebras,” Mat. Sb.,20, No. 2, 239–262 (1947).Google Scholar
  2. 2.
    A. I. Shirshov, “Subalgebras of free Lie algebras,” Mat. Sb.,33, No. 2, 441–445 (1953).Google Scholar
  3. 3.
    A. I. Shirshov, “Subalgebras of free commutative and free anticommutative algebras,” Mat. Sb.,34, No. 1, 81–88 (1954).Google Scholar
  4. 4.
    A. I. Shirshov, “On free Lie rings,” Mat. Sb.,45, No. 2, 113–122 (1958).Google Scholar
  5. 5.
    E. Witt, “Die Unterringe der frien lieschen Ringe,” Math. Z.,64, 195–214 (1956).Google Scholar
  6. 6.
    V. A. Roman'kov, “On the insolubility of the problem of endomorphic reducibility in free nilpotent groups in free rings,” Algebra Logika,16, No. 4, 457–471 (1977).Google Scholar
  7. 7.
    G. V. Kryazhovskikh, “Some algorithmic properties of free algebras,” in: Nineteenth All-Union Algebraic Conference, Lvov. Pub.: Institute for Applied Problems of Mechanics and Mathematics, Vol. 2 (1987).Google Scholar
  8. 8.
    G. V. Kryazhovskikh, “On the approximability of finitely generated algebras,” Sib. Mat. Zh.,21, No. 5, 58–62 (1980).Google Scholar
  9. 9.
    G. P. Kukin, “The problem of equality and free products of Lie algebras,” Sib. Mat. Zh.,24, No. 2, 85–96 (1983).Google Scholar
  10. 10.
    T. Evans, “Word problems,” Bull. Am. Math. Soc.,84, No. 5, 798–802 (1978).Google Scholar
  11. 11.
    C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Pub., New York (1962).Google Scholar
  12. 12.
    P. Cohn, “Subalgebras of free associative algebras,” Proc. London Math. Soc.,14, 618–632 (1964).Google Scholar
  13. 13.
    G. P. Kukin, “Primitive elements of free Lie algebras,” Algebra Logika,9, No. 4, 458–472 (1970).Google Scholar
  14. 14.
    O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Springer-Verlag, New York (1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • G. V. Kryazhovskikh
  • G. P. Kukin

There are no affiliations available

Personalised recommendations