Advertisement

Siberian Mathematical Journal

, Volume 30, Issue 6, pp 885–891 | Cite as

Weakened Burnside problem

  • E. I. Zel'manov
Article

Keywords

Burnside Problem Weaken Burnside Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    W. Magnus, “Über Gruppen and zugeordnete Liesche Ringe,” J. Reine Angew. Math.,182, 142–149 (1940).Google Scholar
  2. 2.
    O. Grun, “Zusammenhang zwischen Potenzbildung und Kommutatorbildung,” J. Reine Angew. Math.,182, 158–177 (1940).Google Scholar
  3. 3.
    H. Zassenhaus, “Ein Verfahren, jeder endlichen p-Gruppe einem Lie-Ring mit der Charakteristik p zu zuordnen,” Abh. Math. Sem. Univ. Hamburg,13, 200–207 (1940).Google Scholar
  4. 4.
    R. Baer, “The higher commutator subgroups of a group,” Bull. Am. Math. Soc.,50, 143–160 (1944).Google Scholar
  5. 5.
    W. Magnus, “A connection between the Baker-Hausdorff formula and a problem of Burnside,” Ann. Math.,52, 11–26 (1950).Google Scholar
  6. 6.
    P. S. Novikov and S. I. Adyan, “Infinite periodic groups. I, II, III,” Izv. Akad. Nauk SSSR, Ser. Mat.,32, No. 1, 212–244; No. 2, 251–524; No. 3, 709–731 (1968).Google Scholar
  7. 7.
    S. I. Adyan, The Problem of Burnside and Identities in Groups [in Russian], Nauka, Moscow (1975).Google Scholar
  8. 8.
    P. Hall and G. Higman, “On the p-length of p-soluble groups and reduction theorems for Burnside's problem,” Proc. London Math. Soc.,6, No. 3, 1–42 (1956).Google Scholar
  9. 9.
    I. N. Sanov, “A certain system of relations in periodic groups with a period-degree of a prime number,” Izv. Akad. Nauk SSSR, Ser. Mat.,15, 477–502 (1951).Google Scholar
  10. 10.
    M. Lazard, “Sur les groupes nilpotents et les anneaux de Lie,” Ann. Sci. École Norm. Sup.,71, No. 3, 101–190 (1954).Google Scholar
  11. 11.
    A. I. Kostrikin, “A problem of Burnside,” Izv. Akad. Nauk SSSR, Ser. Mat.,23, No. 1, 3–34 (1959).Google Scholar
  12. 12.
    A. I. Kostrikin, “Sandwiches in Lie algebras,” Mat. Sb.,110, 3–12 (1979).Google Scholar
  13. 13.
    A. I. Kostrikin, About Burnside [in Russian], Nauka, Moscow (1986).Google Scholar
  14. 14.
    F. J. Grunewald, G. Havas, J. L. Mennicke, and M. F. Newman, “Groups of exponent eight,” Bull. Austral. Math. Soc.,20, 7–16 (1979).Google Scholar
  15. 15.
    G. Higman, “Lie ring methods in the theory of finite nilpotent groups,” Proc. Int. Congr. Math., Edinburgh, 307–312 (1958).Google Scholar
  16. 16.
    E. I. Zel'manov, “On the nilpotency of nil algebras,” Lect. Notes Math., No. 1352, 227–240 (1986).Google Scholar
  17. 17.
    A. G. Kurosh, “Problems of ring theory connected with the Burnside problem on periodic groups, Izv. Akad. Nauk SSSR, Ser. Mat., No. 5, 233–240 (1941).Google Scholar
  18. 18.
    I. Kaplansky, “On a problem of Kurosh and Jacobson,” Bull. Am. Math. Soc.,52, No. 6, 496–500 (1946).Google Scholar
  19. 19.
    J. Levitzki, “On the radical of a general ring,” Bull. Am. Math. Soc.,49, 462–466 (1943).Google Scholar
  20. 20.
    A. I. Shirshov, “Rings with identity relations,” Mat. Sb.,43, 277–283 (1957).Google Scholar
  21. 21.
    E. I. Zel'manov, “Some problems of group theory and Lie algebras,” Mat. Sb.,180, No. 2, 1–8 (1989).Google Scholar
  22. 22.
    E. I. Zel'manov and A. I. Kostrikin, “A theorem on sandwich algebras,” Trudy Mat. Inst. V. A. Steklov Akad. Nauk SSSR, No. 183, 142–149 (1988).Google Scholar
  23. 23.
    A. I. Kostrikin, “Lie rings satisfying the Engel condition,” Dokl. Akad. Nauk SSSR,108, No. 4, 580–582 (1956).Google Scholar
  24. 24.
    B. L. Plotkin, “Algebraic sets of elements in groups and Lie algebras,” Usp. Mat. Nauk,13, No. 6, 133–138 (1958).Google Scholar
  25. 25.
    Yu. A. Bakhturin, Identities in Lie Algebras [in Russian], Nauka, Moscow (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • E. I. Zel'manov

There are no affiliations available

Personalised recommendations