Siberian Mathematical Journal

, Volume 20, Issue 6, pp 910–918 | Cite as

Positive theories of free inverse semigroups

  • B. V. Rosenblatt


Inverse Semigroup Positive Theory Free Inverse Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. I. Mal'tsev, Algebraic Systems, Springer-Verlag (1973).Google Scholar
  2. 2.
    R. S. Lindon, “Properties preserved under homomorphisms,” Pac. J. Math.,9, No. 1, 143–154 (1959).Google Scholar
  3. 3.
    V. G. Durnev, “On the positive theory of free inverse semigroups,” in: Problems in the Theory of Groups and Semigroups [in Russian], Tula (1972), pp. 122–172.Google Scholar
  4. 4.
    V. G. Durnev, “Positive theories of free inverse semigroups,” Author's Abstract of Candidate's Dissertation, V. I. Lenin Moscow Pedagogic Institute (1973).Google Scholar
  5. 5.
    V. G. Durnev, “A positive theory of a free semigroup,” Dokl. Akad. Nauk SSSR,211, No. 4, 772–774 (1973).Google Scholar
  6. 6.
    V. G. Durnev, “On equations in free semigroups and groups,” Mat. Zametki,16, No. 5, 717–724. (1974).Google Scholar
  7. 7.
    V. G. Durnev, “On positive formulas in free semigroups,” Sib. Mat. Zh.,15, No. 5, 1131–1137 (1974).Google Scholar
  8. 8.
    R. T. Vol'vachev, “Positive and elementary linear groups,” Dokl. Akad. Nauk BSSR,12, No. 9, 753–755 (1968).Google Scholar
  9. 9.
    Yu. I. Merzlyakov, “Positive formulas in free groups,” Algebra Logika,5, No. 4, 25–42 (1966).Google Scholar
  10. 10.
    B. M. Shain, “On the theory of generalized groups and generalized groupoids,” in: Theory of Semigroups and Its Application [in Russian], No. 1, Saratov (1965), pp. 286–324.Google Scholar
  11. 11.
    L. M. Gluskin, “Elementary generalized groups,” Mat. Sb.,41, No. 1, 23–36 (1957).Google Scholar
  12. 12.
    E. I. Kleiman, “On free inverse semigroups,” Mat. Zap. Uralsk Univ.,8, No. 3, 49–72 (1972).Google Scholar
  13. 13.
    B. M. Shein, “Free inverse semigroups are not finitely presentable,” Acta Math.,26, Nos. 1–2, 41–52 (1975).Google Scholar
  14. 14.
    W. D. Munn, “Free inverse semigroup,” Semigroup Forum,5, No. 3, 262–269 (1973).Google Scholar
  15. 15.
    Yu. M. Vazhenin, “On a problem of equation of words for inverse semigroups,” in: Fourth All-Union Conference on Mathematical Logic, Vol. 19, Theses, Shtiintsa, Kishinev (1976).Google Scholar
  16. 16.
    Yu. M. Vazhenin, “On the elementary theory of inverse semigroups,” Semigroup Forum,9, No. 3, 189–195 (1974).Google Scholar
  17. 17.
    L. A. O'Carroll, “A note on free inverse semigroups,” Proc. Edinburgh Math. Soc.,19, No. 1, 17–23 (1974).Google Scholar
  18. 18.
    Yu. V. Matiyasevich, “Simple examples of undecidable associative calculuses,” Dokl. Akad. Nauk SSSR,173, No. 6, 1264–1266 (1967).Google Scholar
  19. 19.
    P. J. Cohen, Set Theory and the Continuum Hypothesis, W. A. Benjamin (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • B. V. Rosenblatt

There are no affiliations available

Personalised recommendations