Siberian Mathematical Journal

, Volume 20, Issue 6, pp 868–872 | Cite as

T-generically ordered groups

  • V. V. Bludov
  • A. I. Kokorin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. I. Kokorin and V. M. Kopytov, Linearly Ordered Groups [in Russian], Nauka, Moscow (1972).Google Scholar
  2. 2.
    L. Fuchs, Partially Ordered Algebraic Systems [Russian translation], Mir, Moscow (1965).Google Scholar
  3. 3.
    P. G. Kontorovich and A. I. Kokorin, “On a type of partially ordered groups,” Mat. Zap. Ural'sk. Univ.,3, 39–41 (1962).Google Scholar
  4. 4.
    H. Clifford, “Partially ordered groups of the second and third kinds,” Proc. Am. Math. Soc.,17, 219–225 (1966).Google Scholar
  5. 5.
    V. V. Bludov and A. I. Kokorin, “Semihomogeneously lattice-ordered groups,” in: Algebraic Systems [in Russian], Irkutsk (1976), pp. 3–15.Google Scholar
  6. 6.
    B. H. Neumann and J. A. H. Sheppard, “Finite extensions of fully ordered groups,” Proc. R. Soc. London, Ser. A,279, 320–327 (1957).Google Scholar
  7. 7.
    M. I. Kargapolov and Yu. I. Merzlyakov, Fundamentals of Group Theory [in Russian], Nauka, Moscow (1972).Google Scholar
  8. 8.
    C. Holland, “The lattice-ordered groups of automorphisms of an ordered set,” Mich. Math. J.,10, 399–408 (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • V. V. Bludov
  • A. I. Kokorin

There are no affiliations available

Personalised recommendations