Siberian Mathematical Journal

, Volume 20, Issue 6, pp 827–837 | Cite as

Groups with C-closed noncyclic subgroups

  • V. A. Antonov


Noncyclic Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    W. Gaschütz, “Gruppen, deren sämtliche Untergruppen Zentralisatoren sind,” Arch. Mat. (Basel),6, 5–8 (1954).Google Scholar
  2. 2.
    G. Zacher, “Determination of locally finite groups with duals,” J. Algebra,18, No. 3, 426–431 (1971).Google Scholar
  3. 3.
    R. Brauer and M. Suzuki, “On finite groups of even order whose 2-Sylow group is a quaternion group,” Proc. Nat. Acad. Sci. U.S.A.,45, No. 12, 1757–1759 (1959).Google Scholar
  4. 4.
    D. Gorenstein, Finite Groups, Harper and Row, New York-London (1968).Google Scholar
  5. 5.
    W. B. King, “Presentation of metacyclic groups,” Bull. Austral. Math. Soc.,8, No. 1, 103–131 (1973).Google Scholar
  6. 6.
    N. Blackburn, “Generalization of certain elementary theorems on p-groups,” Proc. London Math. Soc. (Third Series),3, No. 11, 1–22 (1961).Google Scholar
  7. 7.
    N. F. Sesekin and A. I. Starostin, “On a class of nonperiodic groups,” Usp. Mat. Nauk (New Series),9, No. 4, 225–228 (1954).Google Scholar
  8. 8.
    M. Hall, The Theory of Groups, Macmillan, New York (1959).Google Scholar
  9. 9.
    A. G. Kurosh, Group Theory, Chelsea Publ.Google Scholar
  10. 10.
    M. Suzuki, Structure of a Group and Its Lattice of Subgroups, Springer-Verlag, Berlin-Göttingen-Heidelberg (1956).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • V. A. Antonov

There are no affiliations available

Personalised recommendations