Advertisement

Siberian Mathematical Journal

, Volume 24, Issue 6, pp 941–954 | Cite as

Set of solutions of a differential inclusion in banach space. I

  • A. A. Tolstonogov
  • P. I. Chugunov
Article

Keywords

Banach Space Differential Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. A. Tolstonogov, “Differential inclusions in Banach spaces, and continuous selectors,” Dokl. Akad. Nauk SSSR,244, No. 5, 1088–1092 (1979).Google Scholar
  2. 2.
    A. A. Tolstonogov, “The properties of solutions of differential inclusions in Banach spaces,” Dokl. Akad. Nauk SSSR,248, No. 1, 42–46 (1979).Google Scholar
  3. 3.
    A. A. Tolstonogov, “Density and boundedness of sets of solutions of differential inclusions in Banach space,” Dokl. Akad. Nauk SSSR,261, No. 2, 293–296 (1981).Google Scholar
  4. 4.
    A. A. Tolstonogov, “Differential inclusions in Banach space with nonconvex right-hand side. The existence of solutions,” Sib. Mat. Zh.,22, No. 4, 182–198 (1981).Google Scholar
  5. 5.
    L. Schwartz, Analysis [Russian translation], Vol. I, Mir, Moscow (1972).Google Scholar
  6. 6.
    H. A. Antosiewicz and A. Cellina, “Continuous selections and differential relations,” J. Diff. Equations,19, No. 2, 386–398 (1975).Google Scholar
  7. 7.
    A. A. tolstonogov, “Support functions in convex compacta,” Mat. Zametki,22, No. 2, 203–212 (1977).Google Scholar
  8. 8.
    C. J. Himmelberg, “Precompact contraction of metric uniformities and the continuity of F(t, x),” Rend. Srm. Math. Univ. Padova,5, 185–188 (1973).Google Scholar
  9. 9.
    H. A. Antosiewicz and A. Cellina, “Continuous extensions of multifunction,” Ann. Polon. Math.,34, No. 1, 108–111 (1977).Google Scholar
  10. 10.
    G. Piangiani, “On the fundamental theory of multivalued differential equations,” J. Diff. Equations,25, No. 2, 30–38 (1977).Google Scholar
  11. 11.
    R. Gabasov and F. M. Kirillova, “Methods of optimal control. An application. The existence of an optimal control (B. Sh. Mordukhovich),” Itogi Nauki i Tekhniki, Ser. Contemporary Problems in Mathematics, Vol. 6, Moscow (1976), pp. 133–261.Google Scholar
  12. 12.
    M. Hukuhara, “Integration des application mesurables dont la valeur est un compact convexe,” Func. Ekvac.,10, No. 16, 205–223 (1967).Google Scholar
  13. 13.
    R. I. Kozlov, “The theory of differential equations with discontinuous right-hand sides,” Diff. Uravn.,10, No. 7, 1264–1275 (1974).Google Scholar
  14. 14.
    G. G. Kvinikadze, “Some remarks on singular differential inequalities,” Diff. Uravn.,15, No. 6, 980–990 (1979).Google Scholar
  15. 15.
    J. L. Davy, “Properties of the solution set of a generalized differential equations,” Bull. Austral. Math. Soc.,6, No. 3, 379–398 (1972).Google Scholar
  16. 16.
    A. A. Tolstonogov, “The structure of the solution set of differential inclusions in Banach space,” Mat. Sb.,118, No. 1, 3–18 (1982)Google Scholar
  17. 17.
    J. Eisenfeld and V. Lakshmikantham, “On the existence of solutions of differential equations in Banach space,” Rev. Roumaine. Math. Pures et Appl.,22, No. 9, 1215–1221 (1977).Google Scholar
  18. 18.
    A. A. Tolstonogov, “Comparison theorems for differential inclusions in Banach space with nonconvex right-hand side. II. Global solutions,” in: The Direct Method in Stability Theory and Its Applications [in Russian], Nauka, Novosibirsk (1981), pp. 18–34.Google Scholar
  19. 19.
    A. A. Tolstongov, “Comparison theorems for differential inclusions in Banach space with nonconvex right-hand side. I. The existence of solutions,” in: Lyapunov Vector-Functions and Their Construction [in Russian], Nauka, Novosibirsk (1980), pp. 6–34.Google Scholar
  20. 20.
    A. F. Filippov, “Classical solutions of differential equations with multivalued right-hand sides,” Vestn. Mosk. Univ., Set. Mat., Mekh., No. 3, 16–26 (1967).Google Scholar
  21. 21.
    A. F. Filippov, “The existence of solutions of multivalued differential equations,” Mat. Zametki,10, No. 3, 307–313 (1971).Google Scholar
  22. 22.
    H. Kaczynski and C. Olech, “Existence of solutions of orientor fields with nonconvex righ-hand side,” Ann. Polon. Math.,29, No. 1, 61–66 (1974).Google Scholar
  23. 23.
    C. Bardaro and P. Pucci, “Un teorema di esistenza per equazioni differenziali generalizzate un spazi di Banach,” Atti Sem. Mat. Fis. Univ. Modena,28, No. 1, 9–14 (1979).Google Scholar
  24. 24.
    P. I. Chugunov, “The properties of solutions of differential inclusions and control systems,” in: Applied Mathematics and Parcels of Applied Programs [in Russian], Izd. Sibirsk. Energ. Isnt. Sib. Otd. Akad. Nauk USSR, Irkutsk (1980), pp. 155–171.Google Scholar
  25. 25.
    P. I. Chugunov, “Approximation theorems for solutions of differential inclusions,” in: Problems in the Modern Theory of Periodic Motion [in Russian], Vol. 3, Izd. Izhevskogo Mekhanicheskogo Inst., Izhevsk (1979), pp. 79–84.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. A. Tolstonogov
  • P. I. Chugunov

There are no affiliations available

Personalised recommendations