Advertisement

Siberian Mathematical Journal

, Volume 24, Issue 6, pp 858–867 | Cite as

Picard's theorem and hyperbolicity

  • M. G. Zaidenberg
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York (1970).Google Scholar
  2. 2.
    S. Kobayashi, “Intrinsic distances, measures and geometric function theory,” Bull. Am. Math. Soc.,82, 357–416 (1976).Google Scholar
  3. 3.
    B. V. Shabat, Introduction to Complex Analysis [in Russian], Part 2, Nauka, Moscow (1978).Google Scholar
  4. 4.
    R. Brody, “Compact manifolds and hyperbolicity,” Trans. Am. Math. Soc.,235, 213–219 (1978).Google Scholar
  5. 5.
    M. L. Green, “The hyperbolicity of the complement of 2n+1 hyperplanes in general position in Pn and related results,” Proc. Am. Math. Soc.,66, 109–113 (1977).Google Scholar
  6. 6.
    N. L. Kerzman, “Traut manifolds and domains of holomorphy in Cn,” Not. Am. Math. Soc.,16, 675–676 (1969).Google Scholar
  7. 7.
    P. Kierman, “Hyperbolically imbedded spaces and the big Picard theorem,” Math. Ann.,204,203–209 (1973).Google Scholar
  8. 8.
    P. Kiernan and S. Kobayashi, “Holomorphic mappings into projective spaces with lacunary hyperplanes,” Nagoya Math. J.,50, 199–216 (1973).Google Scholar
  9. 9.
    M. G. Zaidenberg and V. Ya. Lin, “On holomorphically noncontractible bounded domains of holomorphy,” Dokl. Akad. Nauk SSSR,249, 282–285 (1979).Google Scholar
  10. 10.
    M. G. Zaidenberg and V. Ya. Lin, “Holomorphic contractibility and quasihomogeneity,” in: Theoretical and Applied Questions of Mathematics, Tartu Conference (1980), pp. 160–162.Google Scholar
  11. 11.
    M. G. Zaidenberg, “The theorems of Brody and Green on conditions for complete hyperbolicity of complex manifolds,” Funktsion. Anal. Ego Prilozhen.,14, No. 4, 77–78 (1980).Google Scholar
  12. 12.
    H. L. Royden, “Remarks on the Kobayashi metric,” Lect. Notes Math.,185, 125–137 (1971).Google Scholar
  13. 13.
    S. Kobayashi, “Complex manifolds with nonpositive holomorphic sectional curvature and hyperbolicity,” Tohoku Math. J.,30, 487–489 (1978).Google Scholar
  14. 14.
    M. L. Green, “Holomorphic maps to complex tori,” Am. J. Math.,100, 615–620 (1978).Google Scholar
  15. 15.
    N. Sybony, “Prolongement des fonctions holomorphes bornees et metrique de Caratheodory,” Invent. Math.,29, 205–230 (1975).Google Scholar
  16. 16.
    N. Sybony, “A class of hyperbolic manifolds,” Ann. Math. Stud.,100, 357–372 (1981).Google Scholar
  17. 17.
    T. J. Barth, “Convex domains and Kobayashi hyperbolicity,” Proc. Am. Math. Soc.,79, 556–558 (1980).Google Scholar
  18. 18.
    A. Eastwood, “A propos des varietes hyperboliques completes,” C. R. Acad. Sci., Ser. A,280, 1071–1075 (1975).Google Scholar
  19. 19.
    P. Kierman, “Results concerning hyperbolic manifolds,” Proc. Am. Math. Soc.,25, 588–592 (1970).Google Scholar
  20. 20.
    H. L. Royden, “Holomorphic fiber bundles with hyperbolic fiber,” Proc. Am. Math. Soc.,43, 311–312 (1974).Google Scholar
  21. 21.
    B. Wong, “On the automorphism group of compact measure hyperbolic manifolds and complex analytic bundles with compact measure hyperbolic fibres,” Proc. Am. Math. Soc.,62, 54–56 (1977).Google Scholar
  22. 22.
    M. Kalka, “A deformation theorem for the Kobayashi metric,” Proc. Am. Math. Soc.,59, 245–251 (1976).Google Scholar
  23. 23.
    M. Wright, “The Kobayashi pseudometric on algebraic manifolds of general type and in deformations of complex manifolds,” Trans. Am. Math. Soc.,232, 357–370 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • M. G. Zaidenberg

There are no affiliations available

Personalised recommendations