Siberian Mathematical Journal

, Volume 24, Issue 6, pp 843–851 | Cite as

Embeddings of finite Chevalley groups and periodic linear groups

  • A. V. Borovik


Linear Group Chevalley Group Periodic Linear Finite Chevalley Group Periodic Linear Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    The Kourovka Notebook (Unsolved Problems in Group Theory), Amer. Math. Soc. Translations, Ser. 2, Vol. 121, Providence (1983).Google Scholar
  2. 2.
    O. H. Kegel, “Über einfache lokal endliche Gruppen,” Math. Z.,95, No. 3, 169–195 (1967).Google Scholar
  3. 3.
    N. Bourbaki, Groupes et Algebres de Lie, Chaps. IV–VI, Hermann, Paris (1968).Google Scholar
  4. 4.
    J. Tits, Buildings of spherical type and finite BN-pairs, Springer-Verlag, Berlin (1974).Google Scholar
  5. 5.
    R. W. Carter, “Simple groups and simple Lie algebras,” J. London Math. Soc.,40, 193–240 (1965).Google Scholar
  6. 6.
    Yu. I. Merzlyakov, Rational Groups [in Russian], Nauka, Moscow (1980).Google Scholar
  7. 7.
    J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York (1975).Google Scholar
  8. 8.
    N. Blackburn, “Some remarks on Cernikov p-groups,” Illinois J. Math.,6, No. 3, 421–433 (1962).Google Scholar
  9. 9.
    I. I. Pavlyuk and V. P. Shchunkov, “Locallyfinite groups satisfying min-p for all p,“ in: Proceedings of the Seventh All-Union Symposium on Group Theory [in Russian], Krasnoyarsk (1980), pp. 84–85.Google Scholar
  10. 10.
    R. Steinberg, Lectures on Chevalley Groups, Mimeographed Notes, Yale (1967).Google Scholar
  11. 11.
    B. Huppert, Endliche Gruppen, I, Springer-Verlag, Berlin (1967).Google Scholar
  12. 12.
    A. E. Zalesskii and V. N. Serezhkin, “Linear groups generated by transvections,” Izv. Akad. Nauk SSSR, Ser. Mat.,40, No. 1, 26–49 (1976).Google Scholar
  13. 13.
    R. Steinberg, “Endomorphisms of Linear Algebraic Groups,” Mem. Am. Math. Soc., No. 80. Providence (1968).Google Scholar
  14. 14.
    N. Burgoine, R. Griess, and R. Lyons, “Maximal subgroups and automorphisms of Chevalley groups,” Pac. J. Math.,71, No. 2, 365–403 (1977).Google Scholar
  15. 15.
    A. Borel, “Properties and linear representations of Chevalley groups” in:Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics,131, 1–55 (1970).Google Scholar
  16. 16.
    R. Ree, “A family of simple groups associated the simple Lie algebra G2,” Am. J. Math.,83, No. 3, 432–462 (1961).Google Scholar
  17. 17.
    J. Dieudonne, La Geometrie des Groupes Classiques, Springer-Verlag, Berlin (1955).Google Scholar
  18. 18.
    T. M. Gagen, Topics in Finite Groups, London Math. Soc. Lecture Notes Series, Vol. 16, Cambridge Univ. Press (1976).Google Scholar
  19. 19.
    A. Borel and J. Tits, “Elements unipotents et sous-groupes paraboliques de groupes reductifs,” Inv. Math.,12, 95–104 (1971).Google Scholar
  20. 20.
    T. A. Springer and R. Steinberg, “Conjugacy classes,” in: Lecture Notes in Mathematics, Vol. 131, Springer-Verlag, Berlin (1970).Google Scholar
  21. 21.
    J. Tits, “Classification of algebraic semisimple groups,” in: Algebraic Groups and Discontinuous Subgroups, Am. Math. Soc., Providence (1966), pp. 33–62.Google Scholar
  22. 22.
    A. Borel and J. Tits, “Groupes reductifs,” Publ. IHES,27, 55–150 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. V. Borovik

There are no affiliations available

Personalised recommendations