Siberian Mathematical Journal

, Volume 11, Issue 1, pp 172–175 | Cite as

Directed endomorphisms of ordered sets

  • E. S. Lyapin
Brief Communications


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. M. Gluskin, “Semigroups of isotonic transformations,” Uspekhi Matem. Nauk,16, No. 5, 157–162 (1961).Google Scholar
  2. 2.
    E. S. Lyapin, “Some endomorphisms of ordered sets,” Izv. Vyssh. Uch. Zaved., Matematika, No. 2, 87–94 (1962).Google Scholar
  3. 3.
    L. D. Zybina, “On the relationships defining the ordering of some endomorphisms of an ordered set,” Uch. Zapiski Leningr. Gos. Ped. In-ta,274, 106–127 (1965).Google Scholar
  4. 4.
    L. M. Popova, “Semigroups of partial endomorphisms of a set with relations,” Sibirsk. Matem. Zh.,4, No. 2, 309–317 (1963).Google Scholar
  5. 5.
    A. M. Kalmanovich, “Semigroups of partial endomorphisms of graphs” [in Ukrainian], Dopovidi Akad. Nauk URSR, No. 2, 141–150 (1965).Google Scholar
  6. 6.
    E. S. Lyapin, “Semigroups of directed transformations of ordered sets,” Matem. Sb.,73, No. 4, 161–168 (1967).Google Scholar
  7. 7.
    D. Rees, “On semigroups,” Proc. Cambridge Philos. Soc.,36, 387–400 (1940).Google Scholar
  8. 8.
    J. Querré, “Contribution to the theory of ordered sets and of systems of ideals” [in French], Ann. Mat. Pura et Appl., 265–389 (1964).Google Scholar
  9. 9.
    G. Szasz, Introduction to Lattice Theory, Budapest (1963).Google Scholar
  10. 10.
    Scientific Results, Algebra, 1964 [in Russian], Chapter 7, § 6, Moscow (1966).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1970

Authors and Affiliations

  • E. S. Lyapin

There are no affiliations available

Personalised recommendations