Advertisement

Siberian Mathematical Journal

, Volume 11, Issue 1, pp 112–120 | Cite as

Finite groups with specified solvable subgroups

  • V. T. Nagrebetskii
Article
  • 11 Downloads

Keywords

Finite Group Solvable Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Ya. G. Berkovich, “Some generalizations and applications of Suzuki's Theorem,” Matem. Sb.,64, No. 3, 357–377 (1964).Google Scholar
  2. 2.
    Zv. Janko, “Endlichen Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen,” Math. Zeits.,79, 422–424 (1962).Google Scholar
  3. 3.
    V. A. Belonogov, “Finite solvable groups with nilpotent 2-maximal subgroups,” Matem. Zametki,3, No. 1, 23–33 (1968).Google Scholar
  4. 4.
    V. T. Nagrebetskii, “Finite groups any nilpotent subgroup of which is invariant,” Matem Zap. Ukrainsk. Gos. Un-ta,6, Tetrad 3, 45–49 (1968).Google Scholar
  5. 5.
    L. Dickinson, Linear Groups, London (1901).Google Scholar
  6. 6.
    M. Hall, Group Theory [Russian translation], IL, Moscow (1962).Google Scholar
  7. 7.
    G. Glauberman, “Central elements in core-free groups,” J. Algebra,4, No. 3, 403–420 (1966).Google Scholar
  8. 8.
    M. Suzuki, “Finite groups of even order in which Sylow 2-groups are independent,” Ann, Math.,80, 58–77 (1964).Google Scholar
  9. 9.
    D. Gorenstein and J. Walter, “The characterization of finite groups with dihedral Sylow 2-subgroups,” J. Algebra, 2, 85–151, 218–270, 354–393 (1965).Google Scholar
  10. 10.
    V. A. Sheriev, “Finite 2-groups with complementable noninvariant subgroups,” Sibirsk. Matem. Zh.,8, No. 1, 215–232 (1967).Google Scholar
  11. 11.
    J. Schur, “Untersuchungen über die Dartstellung der endlichen Gruppen durch gebrochene lineare Substitutionen,” J. Reine Angew. Math.,132, 85–137 (1907).Google Scholar
  12. 12.
    O. Schreier and B. L. van der Waerden, “Die Automorphismen der projecktiven Gruppen,” Hamb. Abh., 6, 303–322 (1928).Google Scholar
  13. 13.
    Yu. A. Gol'fand, “Groups, all subgroups of which are special,” Dokl. Akad. Nauk SSSR,60, No. 3, 1313–1315 (1948).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1970

Authors and Affiliations

  • V. T. Nagrebetskii

There are no affiliations available

Personalised recommendations