Advertisement

Siberian Mathematical Journal

, Volume 11, Issue 1, pp 84–104 | Cite as

Characteristic properties of integral operators with kernels of Carleman type

  • V. B. Korotkov
Article

Keywords

Integral Operator Characteristic Property Carleman Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    T. Carleman, Sur les Equations Intégrales Singulières a Noyau Réel et Symmétrique, Uppsala (1923).Google Scholar
  2. 2.
    M. Schreiber, “Semi-Carleman operators,” Acta Sci. Math., 24, Nos. 1, 2, 82–87 (1963).Google Scholar
  3. 3.
    N. I. Akhiezer, “Integral operators with Carleman kernels,” Usp. Mat. Nauk,2, No. 5, 93–132 (1947).Google Scholar
  4. 4.
    B. Misra, D. Speiser, and G. Targonski, “Integral operators in the theory of scattering” Helv. Phys. Acta,36, No. 7, 963–980 (1963).Google Scholar
  5. 5.
    J. von Neumann, “Charakterisierung des Spectrums eines Integraloperators,” Collected Works, Vol. 4, 38–55 (1962).Google Scholar
  6. 6.
    N. I. Akhiezer and I. M. Glazman, The Theory of Linear Operators in Hilbert Space, Nauka, Moscow (1966).Google Scholar
  7. 7.
    F. Riesz and B. Sz.-Nagy, Lectures on Functional Analysis, IL, Moscow (1954).Google Scholar
  8. 8.
    L. V. Kartorovich and B. Z. Vulikh, “Sur les représentations des opérations linéaires,” Comp. Math.,5, 119–165 (1938).Google Scholar
  9. 9.
    E. Hille and R. Phillips, Functional Analysis and Semigroups, IL, Moscow (1962).Google Scholar
  10. 10.
    V. B. Korotkov, “Integral operators with Carleman kernels,” Diff. Uravn.,2, No. 2, 252–265 (1966).Google Scholar
  11. 11.
    V. B. Korotkov, “On integral operators with Carleman kernels,” Dokl. Akad. Nauk SSSR,165, No. 4, 748–751 (1965).Google Scholar
  12. 12.
    G. Targonski, Seminar on Functional Operators and Equations, Lecture Notes in Math., 33, 1–110 (1967).Google Scholar
  13. 13.
    S. Kachmazh and G. Shteingauz, The Theory of Orthogonal Series, Fizmatgiz, Moscow (1958).Google Scholar
  14. 14.
    N. Dunford and J. T. Schwartz, Linear Operators, General Theory [Russian translation], IL, Moscow (1962).Google Scholar
  15. 15.
    B. Sz.-Nagy, “Spectraldarstellung linearer Transformation des Hilbertschen Raumes,” Erg. der Math.,5/5 (1942).Google Scholar
  16. 16.
    I. M. Gel'fand and N. Ya. Vilenkin, Some Applications of Harmonic Analysis, Rigged Hilbert Spaces, Fizmatgiz, Moscow (1961).Google Scholar
  17. 17.
    M. A. Krasnosel'skii, P. P. Zabreiko, E. I. Pustyl'nik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Nauka, Moscow (1966).Google Scholar
  18. 18.
    I. P. Natanson, Theory of Functions of a Real Variable, GITTL, Moscow (1947).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1970

Authors and Affiliations

  • V. B. Korotkov

There are no affiliations available

Personalised recommendations