Siberian Mathematical Journal

, Volume 11, Issue 1, pp 75–83 | Cite as

Matrix representation of finitely generated groups

  • V. M. Kopytov


Matrix Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. I. Mal'tsev “Isomorphic matrix representation of infinite groups,” Matem. Sb.,8, 405–432 (1940).Google Scholar
  2. 2.
    S. Lang, “Introduction of algebraic geometry,” Inter. Tract. in Pure and App. Math., No. 5 (1958).Google Scholar
  3. 3.
    B. I. Plotkin, Automorphism Groups of Algebraic Systems [in Russian], Nauka, Moscow (1966).Google Scholar
  4. 4.
    V. L. Nisnevich, “Isomorphic matrix representation of groups over a commutative field,” Matem. Sb.,8, 395–404 (1940).Google Scholar
  5. 5.
    S. Curtis and L. Reiner, Representation Theory of Finite Groups and Associative Algebras, New York-London (1962).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1970

Authors and Affiliations

  • V. M. Kopytov

There are no affiliations available

Personalised recommendations