Advertisement

Siberian Mathematical Journal

, Volume 11, Issue 1, pp 1–7 | Cite as

Relative complements in groups

  • I. N. Abramovskii
Article
  • 16 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. Zacher, “Determination of the groups of finite order which are relatively complemented,” Rend. Accad. Sci. Fis. e Mat., Naples,19, 200–206 (1952).Google Scholar
  2. 2.
    M. Suzuki, The Structure of a Group and the Structure of the Lattice of Its Subgroups [Russian translation], IL, Moscow (1960).Google Scholar
  3. 3.
    Yu. N. Mukhin, Relative Complements in a Lattice of Closed Subgroups of a Compact Group [in Russian], All-Union Colloquium on General Algebra, Riga (1967), p. 89.Google Scholar
  4. 4.
    M. Emaldi and G. Zacher, “Relatively complemented solvable groups,” Ricerche Mat.,14, No.1, 3–8 (1965).Google Scholar
  5. 5.
    I. N. Abramovskii, “On groups in which the lattice of the subgroups is a lattice with relative complements,” Algebra i Logika (Seminar), Novosibirsk, VI, No.1, 5–8 (1967).Google Scholar
  6. 6.
    E. Best and O. Taussky, “A class of groups,” Proc. Roy. Irish Acad., Sect. A,47, 55–62 (1942).Google Scholar
  7. 7.
    I. N. Abramovskii and M. I. Kargapolov, “Finite groups with the property of transitivity for normal subgroups,” Uspekhi Matem. Nauk,13, No.3, 242–243 (1958).Google Scholar
  8. 8.
    I. N. Abramovskii, “Locally generalized Hamiltonian groups,” Sibirsk. Matem. Zh.,7, No.3, 481–485 (1966).Google Scholar
  9. 9.
    I. N. Abramovskii, “The structure of locally generalized Hamiltonian groups,” Uchen. Zapisk. Leningr. Gos. Ped. Instituta, No. 302, 43–49 (1967).Google Scholar
  10. 10.
    I. N. Abramovskii, On the Property of Transitivity for Normal Subgroups in Groups [in Russian], Materials from the 2nd Komi Republic Youth Conference on Science, Syktyvkar (1967), p. 136–138.Google Scholar
  11. 11.
    D. Robinson, “Groups in which normality is a transitive relation,” Proc. Cambridge Phil. Soc.,60, No.2, 21–38 (1964).Google Scholar
  12. 12.
    N. V. Baeva, “Completely factorizable groups,” Dokl. Akad. Nauk SSSR,92, No. 5, 877–880 (1953).Google Scholar
  13. 13.
    Yu. M. Gorchakov, “Primarily factorizable groups,” Dokl. Akad. Nauk SSSR,134, No. 1, 23–24 (1960).Google Scholar
  14. 14.
    Yu. M. Gorchakov, “On primarily factorizable groups,” Ukrainsk. Matem. Zh.,14, No. 1, 3–9 (1962).Google Scholar
  15. 15.
    R. Baer, “Sylow theorems for infinite groups,” Duke Math. J.,6, 598–614 (1940).Google Scholar
  16. 16.
    P. A. Gol'berg, “Sylow π-subgroups of locally normal groups,” Matem. Sb.,19, 451–460 (1946).Google Scholar
  17. 17.
    S. N. Chernikov, “Groups with systems of complementable subgroups,” Matem. Sb.,35, 93–128 (1954).Google Scholar
  18. 18.
    Yu. M. Gorchakov, “Primitively factorizable groups,” Uchen. Zapiski Permsk. Universiteta,17, No.2, 15–31 (1960).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1970

Authors and Affiliations

  • I. N. Abramovskii

There are no affiliations available

Personalised recommendations