Advertisement

Siberian Mathematical Journal

, Volume 32, Issue 1, pp 85–92 | Cite as

Hyperbolic cross and the complexity of the approximate solution of Fredholm integral equations of the second kind with differentiable kernels

  • S. V. Pereverzev
Article

Keywords

Integral Equation Approximate Solution Fredholm Integral Equation Hyperbolic Cross Differentiable Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    K. I. Babenko, “Approximation of periodic functions of several variables by trigonometric polynomials,” Dokl. Akad. Nauk SSSR,132, No. 2, 247–250 (1960).Google Scholar
  2. 2.
    K. I. Babenko, “Approximation of a certain class of periodic functions of several variables by trigonometric polynomials,” Dokl. Akad. Nauk SSSR,132, No. 5, 982–985 (1960).Google Scholar
  3. 3.
    A. Kolmogoroff, “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse,” Ann. Math.,37, No. 1, 107–110 (1936).Google Scholar
  4. 4.
    V. N. Temlyakov, Approximations of Functions with Bounded Mixed Derivative [in Russian], Tr. Mat. Inst. Akad. Nauk SSSR,178, (1986), pp. 1–112.Google Scholar
  5. 5.
    H. Wozniakowski, “Information-based complexity,” Annual Review of Computer Science, Vol. 1, Annual Reviews, Palo Alto, Calif. (1986), pp. 319–380.Google Scholar
  6. 6.
    J. F. Traub and H. Wozniakowski, A General Theory of Optimal Algorithms, Academic Press, New York (1980).Google Scholar
  7. 7.
    J. F. Traubm, G. W. Wasilkowski, and H. Wozniakowski, Information, Uncertainty, Complexity, Addison-Wesley, Reading, Mass. (1983).Google Scholar
  8. 8.
    N. S. Bakhvalov, N. M. Korobov, and N. N. Chentsov, “Application of number-theoretic nets to problems of approximation analysis,” in: Fourth All-Union Math. Congress (1961), Fizmatgiz,2, Moscow-Leningrad (1964), pp. 580–587.Google Scholar
  9. 9.
    K. V. Emel'yanov and A. M. Il'in, “On the number of arithmetic operations necessary for the approximate solution of Fredholm's integral equation of the second kind,” Zh. Vychisl. Mat. Mat. Fiz.,7, No. 4, 905–910 (1967).Google Scholar
  10. 10.
    A. F. Shapkin, “On methods for solving Fredholm equations that are optimal on classes of functions,” Mat. Zametki,15, No. 4, 595–602 (1974).Google Scholar
  11. 11.
    A. G. Werschulz, “What is the complexity of the Fredholm problem of the second kind?,” J. Integral Equations,9, No. 3, 213–241 (1985).Google Scholar
  12. 12.
    L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).Google Scholar
  13. 13.
    N. S. Kurpel', Projection-Iterative Methods for Solving Operator Equations [in Russian], Naukova Dumka, Kiev (1968).Google Scholar
  14. 14.
    S. V. Pereverzev, “On the optimization of adaptive methods for the approximate solution of integral equations,” Dokl. Akad. Nauk SSSR,267, No. 6, 1304–1308 (1982).Google Scholar
  15. 15.
    S. V. Pereverzev, “On optimal methods of prescribing information for the solution of integral equations with differentiable kernels,” Ukr. Mat. Zh.,38, No. 1, 55–63 (1986).Google Scholar
  16. 16.
    V. M. Tikhomirov, Some Questions in Approximation Theory [in Russian], Moscow State Univ. (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • S. V. Pereverzev

There are no affiliations available

Personalised recommendations