Siberian Mathematical Journal

, Volume 32, Issue 1, pp 33–38 | Cite as

Deformations of the representations of the fundamental groups of three-dimensional manifolds

  • M. É. Kapovich


Fundamental Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. Weil, “Discrete subgroups of Lie groups. I, II,” Ann. Math.,72, 369–384 (1960);75, 578–602 (1962).Google Scholar
  2. 2.
    M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, New York-Heidelberg (1972).Google Scholar
  3. 3.
    G. Mostow, Strong Rigidity of Locally Symmetric Spaces, Princeton Univ. Press, Princeton (1973).Google Scholar
  4. 4.
    G. A. Margulis, “Arithmetic properties of discrete groups,” Usp. Mat. Nauk,29, No. 1, 50–96 (1974).Google Scholar
  5. 5.
    G. Prasad, “Strong rigidity of Q-rank 1 lattices,” Invent. Math.,21, No. 4, 225–286 (1973).Google Scholar
  6. 6.
    D. Sullivan, “On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions,” Ann. Math. Stud., No. 97, 465–496 (1981).Google Scholar
  7. 7.
    H. Garland and M. Raghunathan, “Fundamental domains for lattices in R-rank 1 semisimple Lie groups,” Ann. Math.,92, 272–326 (1970).Google Scholar
  8. 8.
    W. Thurston, Geometry and Topology of 3-Manifolds, Princeton Univ. Press. Lecture Notes, Princeton (1978).Google Scholar
  9. 9.
    M. Culler and P. Shalen, “Varieties of group representations and splittings of 3-manifolds,” Ann. Math.,117, No. 1, 109–146 (1983).Google Scholar
  10. 10.
    M. Neumann and D. Zagier, “Volumes of hyperbolic manifolds,” Topology,24, No. 3, 303–332 (1985).Google Scholar
  11. 11.
    M. É. Kapovich, “Deformations of the representations of the fundamental groups of threedimensional manifolds,” in: Proceedings of the All-Union Conference on Geometry, Kishinev, September 1988, Kishinev (1988).Google Scholar
  12. 12.
    J. Hempel, 3-Manifolds, Princeton Univ. Press, Princeton (1976).Google Scholar
  13. 13.
    G. E. Bredon, Sheaf Theory, McGraw-Hill, New York (1967).Google Scholar
  14. 14.
    A. Weil, “Remarks on the cohomology of groups,” Ann. Math.,80, No. 1, 149–157 (1964).Google Scholar
  15. 15.
    A. Lubotzky and A. Magid, “Varieties of representations of finitely generated groups,” Mem. Am. Math. Soc.,58, No. 336 (1985).Google Scholar
  16. 16.
    W. Goldman and J. Millson, “Deformations of flat bundles over Kahler manifolds,” Lect. Notes Pure Appl. Math.,105, 129–145 (1987).Google Scholar
  17. 17.
    W. Goldman, “The symplectic nature of fundamental groups of surfaces,” Adv. Math.,54, No. 2, 200–225 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • M. É. Kapovich

There are no affiliations available

Personalised recommendations