Advertisement

Siberian Mathematical Journal

, Volume 32, Issue 1, pp 1–16 | Cite as

Polynomial asymptotic representation of subharmonic functions in the plane

  • P. Z. Agranovich
  • V. N. Logvinenko
Article

Keywords

Asymptotic Representation Subharmonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. Ya. Levin, Distribution of Zeros of Entire Functions [in Russian], Gosudarstvennoe Izdatel'stvo Tekhniko-teoreticheskoi Literatury, Moscow (1956).Google Scholar
  2. 2.
    V. S. Azarin, “On the asymptotic behavior of subharmonic and entire functions,” Mat. Sb.,108, No. 2, 147–167 (1979).Google Scholar
  3. 3.
    V. N. Logvinenko, “On entire functions with zeros on the halfline. I,” Teor. Funktsii, Funkts. Anal. Prilozhen., No. 16, 154–158 (1972).Google Scholar
  4. 4.
    V. N. Logvinenko, “On entire functions with zeros on the halfline. II,” Teor. Funktsii, Funkts. Anal. Prilozhen., No. 17, 84–99 (1973).Google Scholar
  5. 5.
    P. Z. Agranovich and V. N. Logvinenko, “The analogue of the Valiron-Titchmarsh theorem for the binomial asymptotics of a subharmonic function with the mass on a finite system of rays,” Sib. Mat. Zh.,24, No. 5, 3–19 (1985).Google Scholar
  6. 6.
    V. N. Logvinenko, “Binomial asymptotic for a certain class of entire functions,” Dokl. Akad. Nauk SSSR,205, No. 5, 1037–1039 (1972).Google Scholar
  7. 7.
    Yu. I. Lyubarskii and M. L. Sodin, Analogues of the Sine-Type Functions for Convex Domains [in Russian], Kharkov (1986) (Preprint No. 17-86, Fiziko-tekhnicheskii Institut Nizkikh Temperatur Akademii Nauk Ukr. SSR).Google Scholar
  8. 8.
    R. S. Yulmukhametov, “Asymptotic of the difference of subharmonic functions,” Mat. Zametki,41, No. 3, 348–355 (1987).Google Scholar
  9. 9.
    A. Zygmund, Integrales Singulières, Lecture Notes in Math., Vol. 204, Springer-Verlag, Berlin-New York (1971).Google Scholar
  10. 10.
    R. S. Yulmukhametov, “Approximation of subharmonic functions,” Mat. Sb.,124, No. 3, 393–415 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • P. Z. Agranovich
  • V. N. Logvinenko

There are no affiliations available

Personalised recommendations