Advertisement

Siberian Mathematical Journal

, Volume 27, Issue 6, pp 863–875 | Cite as

A space of complete linked systems

  • A. V. Ivanov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. van de Vel, “The fixed point property of superextensions,” in: General Topology and Relat. Modern Analysis and Algebra, IV: Proc. 4th Prague Topol. Symp. (1976), Pt B, Prague (1977), pp. 477–480.Google Scholar
  2. 2.
    A. V. Ivanov, “Superextensions of openly generated bicompacta,” Dokl. Akad. Nauk SSSR,259, No. 2, 275–278 (1981).Google Scholar
  3. 3.
    A. V. Ivanov, “The solution of van Mill's problem on the characterization of bicompacta whose superextensions are absolute retracts,” Dokl. Akad. Nauk SSSR,262, No. 3, 526–528 (1982).Google Scholar
  4. 4.
    E. V. Shchepin, “The topology of limiting spaces of uncountable inverse spectra,” Usp. Mat. Nauk,31, No. 5, 191–226 (1976).Google Scholar
  5. 5.
    E. V. Shchepin, “Functors and uncountable powers of compacta,” Usp. Mat. Nauk,36, No. 3, 3–61 (1981).Google Scholar
  6. 6.
    A. Verbeek, “Superextensions of topological spaces” in: MC tract. 41, Amsterdam (1972).Google Scholar
  7. 7.
    P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory [in Russian], Nauka, Moscow (1973).Google Scholar
  8. 8.
    R. Engelking, General Topology, Monografie Mathematyezne, PWN, Warsaw (1977).Google Scholar
  9. 9.
    H. Torunczyk, “On CE-images of the Hilbert cube and characterization of Q-manifolds,” Fund. Math.,106, No. 1, 31–40 (1980).Google Scholar
  10. 10.
    J. van Mill, “Superextensions of metrizable continua are Hilbert cubes,” Fund. Math.,107, 201–218 (1980).Google Scholar
  11. 11.
    J. van Mill, “Recent results of superextensions” in: General Topology and Relat. Modern Analysis and Algebra, IV: Proc. 4th Prague Topol. Symp. 1976, Pt B, Prague (1977), pp. 279–283.Google Scholar
  12. 12.
    K. Kuratowski, Topology, Academic Press (1969).Google Scholar
  13. 13.
    E. V. Shchepin, “On ϰ-metrizable spaces,” Izv. Akad. Nauk SSSR,43, No. 2, 219–240 (1979).Google Scholar
  14. 14.
    E. V. Shchepin, “On Tikhonov manifolds,” Dokl. Akad. Nauk SSSR,246, No. 3, 551–555 (1979).Google Scholar
  15. 15.
    A. V. Ivanov, “On superextensions λnX,” Usp. Mat. Nauk,36, No. 3, 213–214 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • A. V. Ivanov

There are no affiliations available

Personalised recommendations