Siberian Mathematical Journal

, Volume 25, Issue 1, pp 156–166 | Cite as

Fixed points of analytic operators in a Banach space and their applications

  • V. A. Khatskevich
  • D. M. Shoikhet


Banach Space Analytic Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. A. Krasnosel'skii et al., Approximate Solution of Operator Equations [in Russian], Nauka, Moscow (1969).Google Scholar
  2. 2.
    A. A. Ivanov, “Fixed points of mappings of metric spaces,” in: Investigations in Topology, Vol. 11, J. Sov. Math.,12, No. 1 (1979).Google Scholar
  3. 3.
    D. M. Shoikhet, Some Properties of Analytic Operators in a Banach Space and Inversion Theorems [in Russian], Karsnoyarsk (1980).Google Scholar
  4. 4.
    L. Schwartz, Analysis [Russian translation], Vol. 2, Mir, Moscow (1972).Google Scholar
  5. 5.
    E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. (1974).Google Scholar
  6. 6.
    D. M. Shoikhet, “Solvability conditions for equations with an analytic operator,” Preprint IFSO-15M, L. V. Kirenskii Institute of Physics, Siberian Branch of the Academy of Sciences of the USSR, Krasnoyarsk (1980).Google Scholar
  7. 7.
    L. A. Harris, “Schwartz-Pick systems of pseudometrics for domains in normed linear spaces,” in: Advances in Holomorphy, North-Holland (1979), pp. 345–406.Google Scholar
  8. 8.
    K. T. Akhmedov, “Analytic method of Nekrasov-Nazarov in nonlinear analysis,” Usp. Mat. Nauk,12, No. 4, 135–154 (1957).Google Scholar
  9. 9.
    M. M. Vainberg and V. A. Trenogin, Theory of Bifurcation of Nonlinear Equations [in Russian], Nauka, Moscow (1969).Google Scholar
  10. 10.
    P. P. Rybin, “Analytic investigation of a perturbed linear integral equation,” Uch. Zap. Kazansk. Univ.,117, No. 2, 75–78 (1957).Google Scholar
  11. 11.
    V. A. Trenogin, Functional Analysis [in Russian], Nauka, Moscow (1980).Google Scholar
  12. 12.
    V. A. Khatskevich, “Application of the principle of compressive mappings to the theory of spaces with indefinite metric,”Funkts. Anal. Prilozhen.,12, No. 1, 88–89 (1978).Google Scholar
  13. 13.
    T. Ya. Azizov and S. A. Khoroshavin, “Invariant subspaces of operators acting on spaces with indefinite metric,” Funkts. Anal. Prilozhen.,14, No. 4, 1–7 (1980).Google Scholar
  14. 14.
    A. V. Sobolev and V. A. Khatskevich, “Definite invariant subspaces and the structure of the spectrum of a focussing plus-operator,” Funkts. Anal. Prilozhen.,15, No. 1, 84–85 (1981).Google Scholar
  15. 15.
    Ju. L. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in a Banach Space, Amer. Math. Soc. (1974).Google Scholar
  16. 16.
    V. A. Khatskevich, “Symmetry properties of a plus-operator and its adjoint,” in: Functional Analysis [in Russian], Vol. 14, Ul'yanovsk (1980), pp. 177–186.Google Scholar
  17. 17.
    C. L. Siegel, “Symplectic geometry,” Am. J. Math.,45, 1–86 (1943).Google Scholar
  18. 18.
    M. G. Krein and Yu. L. Shmul'yan, “Linear-fractional transformations with operator coefficients,” Mat. Issled.,2, No. 3, 64–96, Kishinev (1967).Google Scholar
  19. 19.
    R. S. Phillips, “On symplectic mappings of contraction operators,”Stud. Math.,21, 15–27 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. A. Khatskevich
  • D. M. Shoikhet

There are no affiliations available

Personalised recommendations