Advertisement

Siberian Mathematical Journal

, Volume 25, Issue 1, pp 111–121 | Cite as

Geometric aspects of the inverse scattering problem

  • V. N. Stepanov
Article

Keywords

Inverse Scattering Scattering Problem Geometric Aspect Inverse Scattering Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Yu. E. Anikonov and A. G. Marchuk, “A contribution to the inverse problem of diffraction,” Mat. Probl. Geofiz., Novosibirsk, Vol. 6, Part 2, 54–63 (1975).Google Scholar
  2. 2.
    A. L. Bukhgeim, “The inverse scattering problem in the Kirchhoff approximation,” Dokl. Akad. Nauk SSSR,254, No. 6, 1292–1294 (1980).Google Scholar
  3. 3.
    V. N. Stepanov, “Uniqueness of the solution to the inverse scattering problem,” in: Uniqueness, Stability, and Methods for Solving Inverse and Improperly Posed Problems [in Russian], Izd. VTs Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1980), pp. 77–81.Google Scholar
  4. 4.
    L. I. Ronkin, Introduction to the Theory of Entire Functions of Many Variables [in Russian], Nauka, Moscow (1971).Google Scholar
  5. 5.
    W. Blaschke, Kreis und Kugel, Walter de Gruyter, Berlin (1956).Google Scholar
  6. 6.
    G. Hardy, L. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press (1936).Google Scholar
  7. 7.
    A. V. Pogorelov, Hilbert's Fourth Problem [in Russian],Google Scholar
  8. 8.
    L. Bers, F. John, and M. Schecterh, Partial Differential Equations, Lectures in Appl. Math., Interscience, New York (1964).Google Scholar
  9. 9.
    S. L. Sobolev, Introduction to the Theory of Cubature Formulas [in Russian], Nauka, Moscow (1974).Google Scholar
  10. 10.
    H. Buseman, Convex Surfaces, Wiley-Interscience, New York (1958).Google Scholar
  11. 11.
    A. V. Pogorelov, The Extrinsic Geometry of Convex Surfaces [in Russian], Nauka, Moscow (1969).Google Scholar
  12. 12.
    A. V. Pogorelov, The Multidimensional Minkowski Problem [in Russian], Nauka, Moscow (1975).Google Scholar
  13. 13.
    Yu. A. Volkov, “Stability of the solution to the Minkowski problem,” Vestn. Leningr. Gos. Univ., No. 1, 33–43 (1963).Google Scholar
  14. 14.
    A. Majda and M. Taylor, “The asymptotic behavior of the diffraction peak in classical scattering,” Commun. Pure Appl. Math.,30, No. 5, 639–669 (1977).Google Scholar
  15. 15.
    H. Hönl, A. W. Maue, and K. Westpfahl, Theorie der Beugung, Handbuch der Physik, ed. S. Flügge, Band XXV/1, 218–573, Springer-Verlag, Berlin (1961).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. N. Stepanov

There are no affiliations available

Personalised recommendations