Advertisement

Siberian Mathematical Journal

, Volume 25, Issue 1, pp 43–50 | Cite as

Carleman estimates for Volterra operators and uniqueness of inverse problems

  • A. L. Bukhgeim
Article

Keywords

Inverse Problem Carleman Estimate Volterra Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis [in Russian], Nauka, Moscow (1980).Google Scholar
  2. 2.
    A. L. Bukhgeim, “Carleman estimates for Volterra operators and inverse problems,” in: Questions of Well-Posedness of Inverse Problems [in Russian], Izd. Vychisl. Tsen. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1981), pp. 11–21.Google Scholar
  3. 3.
    M. V. Klibanov, “Global uniqueness of inverse problems,” in: Questions of Well-Posedness of Inverse Problems [in Russian], Izd. Vychisl. Tsen. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1981), pp. 60–71.Google Scholar
  4. 4.
    A. L. Bukhgeim and M. V. Klibanov, “The global uniqueness of a class of multidimensional inverse problems,” Dokl. Akad. Nauk SSSR,260, No. 2, 269–272 (1981).Google Scholar
  5. 5.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press (1966).Google Scholar
  6. 6.
    L. Nirenberg, Lectures on Linear Partial Differential Equations, CBMS, Regional Conference Series in Math., No. 17, Amer. Math. Soc., Providence (1973).Google Scholar
  7. 7.
    S. G. Krein, “On the classes of well-posedness for certain boundary-value problems,” Dokl. Akad. Nauk SSSR,114, No. 6, 1162–1165 (1957).Google Scholar
  8. 8.
    A. D. Iskenderov and R. G. Tagiev, “The inverse problem on the determination of the right-hand sides of evolution equations in a Banach space,” Vopr. Prikl. Mat. Kibern., No. 1, 51–56 (1979).Google Scholar
  9. 9.
    N. Ya. Beznoshchenko and A. I. Prilepko, “The inverse problems for equations of parabolic type,” in: Problems of Mathematical Physics and Computational Mathematics [in Russian], A. A. Samarskii (ed.), Nauka, Moscow (1977), pp. 51–63.Google Scholar
  10. 10.
    L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin-New York (1963).Google Scholar
  11. 11.
    V. M. Tsakov, “On the uniqueness of solution of the Cauchy problem,” Dokl. Akad. Nauk SSSR,255, No. 1, 18–21 (1980).Google Scholar
  12. 12.
    M. M. Lavrent'ev, A. G. Kraeva, and A. L. Bukhgeim, Inverse Problems of Chemical Kinematics [in Russian], Preprint of the Computer Center, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk (1980).Google Scholar
  13. 13.
    A. L. Bukhgeim, “The normal solvability of certain special operator equations of first kind (sufficient condition),” in: Mathematical Problems of Geophysics [in Russian], No. 6, Part 1, Izd. Vychisl. Tsen. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1975), pp. 42–54.Google Scholar
  14. 14.
    A. L. Bukhgeim, “Equations of Volterra type and inverse problems,” in: Methods of Functional Analysis in Problems of Mathematical Physics [in Russian], Yu. M. Berezanskii (ed.), Izd. Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1978), pp. 17–22.Google Scholar
  15. 15.
    L. P. Nizhnik The Inverse Nonstationary Scattering Problem [in Russian], Naukova Dumka, Kiev (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. L. Bukhgeim

There are no affiliations available

Personalised recommendations