Advertisement

Siberian Mathematical Journal

, Volume 28, Issue 6, pp 960–965 | Cite as

Space of K-contact metrics of a three-dimensional manifold

  • N. K. Smolentsev
Article
  • 28 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. E. Blair, “On the space of Riemannian metrics on surfaces and contact manifolds,” Lect. Notes Math.,792, 203–212 (1980).Google Scholar
  2. 2.
    R. Palais, Foundations of Global Nonlinear Analysis, Benjamin, New York (1968).Google Scholar
  3. 3.
    H. Omori, Infinite-Dimensional Lie Transformation Groups, Springer-Verlag, Berlin-New York (1974).Google Scholar
  4. 4.
    N. K. Smolentsev, “On the group of diffeomorphisms that leave a vector field fixed,” Sib. Mat. Zh.,25, No. 2, 180–185 (1984).Google Scholar
  5. 5.
    R. Abraham, Transversality of Maps; S. Lang, Introduction to the Theory of Differentiable Manifolds. Appendix III [Russian translation], Mir, Moscow (1967).Google Scholar
  6. 6.
    D. E. Blair, Contact Manifolds in Riemannian Geometry, Springer-Verlag, Berlin-New York (1976).Google Scholar
  7. 7.
    T. Ratiu and R. Schmid, “The differentiable structure of three remarkable diffeomorphism groups,” Math. Z.,177, 81–100 (1981).Google Scholar
  8. 8.
    A. E. Fischer and A. Tromba, “On a purely “Riemannian” proof of the structure and dimension of the unramified moduli space of a compact Riemannian surface,” Math. Ann.,267, 311–345 (1984).Google Scholar
  9. 9.
    A. F. Solov'ev, “The curvature of a distribution,” Mat. Zametki,35, No. 1, 111–123 (1984).Google Scholar
  10. 10.
    D. E. Fischer and J. F. Marsden, “Linearization stability of nonlinear partial differential equations,” Proc. Symp. Pure Math., Am. Math. Soc.,27, part 2, 219–263 (1975).Google Scholar
  11. 11.
    D. Ebin, “The manifold of Riemannian metrics,” Proc. Symp. Pure Math., Am. Math. Soc.,15, 11–44 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • N. K. Smolentsev

There are no affiliations available

Personalised recommendations