Advertisement

Siberian Mathematical Journal

, Volume 28, Issue 6, pp 917–928 | Cite as

Zeeman's conjecture for unthickened special polyhedra is equivalent to the Andrews-Curtis conjecture

  • S. V. Matveev
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. V. Matveev, “Special skeletons of piecewise-linear manifolds,” Mat. Sb.,92, No. 2, 282–293 (1973).Google Scholar
  2. 2.
    B. G. Casler, “An embedding theorem for connected 3-manifolds with boundary,” Proc. Am. Math. Soc.,16, 559–566 (1965).Google Scholar
  3. 3.
    D. Gillman and D. Rolfsen, “The Zeeman conjecture for standard spines is equivalent to the Poincare conjecture,” Topology,22, No. 3, 315–323 (1983).Google Scholar
  4. 4.
    S. V. Matveev, “Transformations of special spines,” Deposited at VINITI, July 8, 1985, No. 4907-85.Google Scholar
  5. 5.
    J. J. Andrews and M. L. Curtis, “Free groups and handlebodies,” Proc. Am. Math. Soc.,16, No. 2, 192–195 (1965).Google Scholar
  6. 6.
    R. Kreher and W. Metzler, “Simpliziale Transformationen von Polyedern und die Zeeman-Vermutung,” Topology,22, No. 1, 19–26 (1983).Google Scholar
  7. 7.
    I. A. Volodin, V. E. Kuznetsov, and A. T. Fomenko, “On the problem of discriminating algorithmically the standard three-dimensional sphere,” Usp. Mat. Nauk,29, No. 5, 71–168 (1974).Google Scholar
  8. 8.
    J. W. Milnor, “Whitehead torsion,” Bull. Am. Math. Soc.,72, 358–426 (1966).Google Scholar
  9. 9.
    H. Zieschang, “Uber einfache Kurven auf Vollbrezeln,” Abh. Math. Sem. Univ. Hamburg,2, No. 3–4, 231–250 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • S. V. Matveev

There are no affiliations available

Personalised recommendations