Advertisement

Siberian Mathematical Journal

, Volume 28, Issue 6, pp 912–916 | Cite as

A class of Abelian groups with hereditary rings of endomorphisms

  • P. A. Krylov
Article
  • 14 Downloads

Keywords

Abelian Group Hereditary Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, and A. A. Tuganbaey, “Rings of endomorphisms of modules and lattices of submodules,” J. Sov. Math.,31, No. 3 (1985).Google Scholar
  2. 2.
    D. M. Arnold and E. L. Lady, “Endomorphism rings and direct sums of torsion-free abelian groups,” Trans. Am. Math. Soc.,211, 225–237 (1975).Google Scholar
  3. 3.
    U. Albrecht, “Endomorphism rings and A-projective torsion-free abelian groups,” in: Abelian Group Theory. Proceedings. R. Gobel, L. Lady, and A. Mader (eds.), Springer-Verlag, Berlin (1983), pp. 209–227.Google Scholar
  4. 4.
    L. Fuchs, Infinite Abelian Groups, Academic Press, New York (1970).Google Scholar
  5. 5.
    C. E. Murley, “The classification of certain classes of torsion-free abelian groups,” Pac. J. Math.,40, No. 3, 647–665 (1972).Google Scholar
  6. 6.
    D. M. Arnold, “Strongly homogeneous torsion-free abelian groups of finite rank,” Proc. Am. Math. Soc.,56, 67–72 (1976).Google Scholar
  7. 7.
    P. A. Krylov, “Strongly homogeneous torsion-free abelian groups,” Sib. Mat. Zh.,24, No. 2, 77–84 (1983).Google Scholar
  8. 8.
    Yu. B. Dobrusin, “Torsion-free quasipure injective abelian groups,” in: Abelian Groups and Modules [in Russian], Vol. 136, Tomsk State Univ. (1980), pp. 45–69.Google Scholar
  9. 9.
    D. M. Arnold, B. O'Brien, and J. D. Reid, “Quasipure injective and projective torsion-free abelian groups of finite rank,” Proc. London Math. Soc.,38, No. 3, 532–544 (1979).Google Scholar
  10. 10.
    P. A. Krylov, “Irreducible torsion-free abelian groups and their rings of endomorphisms,” in: Abelian Groups and Modules [in Russian], Vol. 4, Tomsk State Univ. (1986), pp. 73–100.Google Scholar
  11. 11.
    D. M. Arnold, “Endomorphism rings and subgroups of finite rank torsion-free abelian groups,” Rocky Mount. J. Math.,12, No. 2, 241–256 (1982).Google Scholar
  12. 12.
    A. P. Mishina, —“Abelian groups,” J. Sov. Math.,23, No. 6 (1983).Google Scholar
  13. 13.
    M. Huber and R. B. Warfield, “Homomorphisms between cartesian powers of abelian groups,” in: Abelian Group Theory. Proceedings. R. Gobel and F. Walker (eds.), Springer-Verlag, Berlin (1981), pp. 202–227.Google Scholar
  14. 14.
    D. M. Arnold, Finite Rank Torsion-Free Abelian Groups and Rings, Springer-Verlag, Berlin (1982).Google Scholar
  15. 15.
    P. A. Krylov, “Radicals of the rings of endomorphisms of torsion-free abelian groups,” Mat. Sb.,95, No. 2, 214–228 (1974).Google Scholar
  16. 16.
    K. M. Rangaswamy, “Separable abelian groups as modules over their endomorphism rings,” Proc. Am. Math. Soc.,91, No. 2, 195–198 (1984).Google Scholar
  17. 17.
    C. Faith, Algebra: Rings, Modules, and Categories, Springer-Verlag, New York-Heidelberg (1973).Google Scholar
  18. 18.
    P. A. Krylov, “Torsion-free abelian groups and their rings of endomorphisms,” Izv. Vyssh. Uchebn. Zaved., Math., No. 11, 26–33 (1979).Google Scholar
  19. 19.
    L. Levy, “Torsion-free and divisible modules over nonintegral domains,” Can. J. Math.,15, 132–151 (1963).Google Scholar
  20. 20.
    J. Lambek, Lectures on Rings and Modules, Blaisdell Pub. Co., Waltham, Massachusetts (1966).Google Scholar
  21. 21.
    R. S. Pierce, “Subrings of simple algebras,” Michigan Math. J.,7, 241–243 (1960).Google Scholar
  22. 22.
    O. Zariski and P. Samuel, Commutative Algebra, Springer-Verlag, New York-Heidelberg-Berlin (1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • P. A. Krylov

There are no affiliations available

Personalised recommendations