Advertisement

Siberian Mathematical Journal

, Volume 28, Issue 6, pp 884–888 | Cite as

Stability criteria for stationary solutions of discrete chains of cascade type

  • E. B. Gledzer
  • A. B. Glukhovskii
Article
  • 25 Downloads

Keywords

Stationary Solution Stability Criterion Discrete Chain Cascade Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London (1982).Google Scholar
  2. 2.
    M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, Berlin (1981).Google Scholar
  3. 3.
    S. P. Novikov (editor), Theory of Solitons: The Inverse Scattering Method, Consultants Bureau, New York (1984).Google Scholar
  4. 4.
    A. N. Kolmogorov, “Energy scattering in the presence of locally isotropic turbulence,” Dokl. Akad. Nauk SSSR,32, No. 1, 18–21 (1941).Google Scholar
  5. 5.
    A. M. Obukhov, “Energy distribution in the spectrum of a turbulent stream,” Dokl. Akad. Nauk SSSR,32, No. 1, 22–24 (1941).Google Scholar
  6. 6.
    A. M. Obukhov, “Some general characteristic equations of the dynamics of the atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,7, No. 7, 695–704 (1971).Google Scholar
  7. 7.
    A. M. Obukhov (Oboukhov), “On the problem of nonlinear interactions in fluid dynamics,” Gerlands Beitr. Geophys.,82, No. 4, 282–290 (1973).Google Scholar
  8. 8.
    A. M. Obukhov (Oboukhov) and F. V. Dolzhanskii (Dolzhansky), “On simple models for simulation of nonlinear processes in convection and turbulence,” Geophys. Astrophys. Fluid Dyn.,6, 195–209 (1975).Google Scholar
  9. 9.
    E. B. Gledzer, F. V. Dolzhanskii, and A. M. Obukhov, Systems of Hydrodynamic Type and Their Applications [in Russian], Nauka, Moscow (1981).Google Scholar
  10. 10.
    S. M. Vishik and A. M. Obukhov, “Symmetrizable and Hamiltonian systems,” Sib. Mat. Zh.,20, No. 3, 502–511 (1979).Google Scholar
  11. 11.
    A. M. Obukhov, “Integral invariants in systems of hydrodynamic type,” Dokl. Akad. Nauk SSSR,184, No. 2, 309–312 (1969).Google Scholar
  12. 12.
    E. B. Gledzer, “Reduction of the Navier-Stokes equations to a nonlinear chain of cascade type,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza,15, No. 1, 26–35 (1980).Google Scholar
  13. 13.
    V. D. Zimin, “Hierarchical model of turbulence,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,17, No. 2, 1265–1273 (1981).Google Scholar
  14. 14.
    A. L. Makarov, “Approximation of the Burgers equation by nonlinear chains of cascade type,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,27, No. 9, 1136–1141 (1984).Google Scholar
  15. 15.
    A. B. Glukhovskii, “Stability of nonlinear systems of chain type, modeling cascade processes of energy transfer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,11, No. 8, 779–785 (1975).Google Scholar
  16. 16.
    E. B. Gledzer, “The asymptotic description of cascade processes in nonlinear chains with a large number of links,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,20, No. 9, 795–801 (1984).Google Scholar
  17. 17.
    A. B. Glukhovskii, “Influence of the scale-splitting coefficient on the stability of chain-type nonlinear systems,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,11, No. 12, 1323–1326 (1975).Google Scholar
  18. 18.
    E. B. Gledzer and A. L. Makarov, “The determination of effective viscosity in a finite-dimensional cascade model of turbulence,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,21, No. 9, 899–906 (1985).Google Scholar
  19. 19.
    A. B. Glukhovskii, “The effect of quadratic friction on multitiered nonlinear systems,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,13, No. 9, 917–925 (1977).Google Scholar
  20. 20.
    D. R. Merkin, Introduction to the Theory of the Stability of Motion [in Russian], Nauka, Moscow (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • E. B. Gledzer
  • A. B. Glukhovskii

There are no affiliations available

Personalised recommendations