Advertisement

Siberian Mathematical Journal

, Volume 28, Issue 5, pp 798–806 | Cite as

Isometry group of the hyperbolic space of the Seifert-Weber dodecahedron

  • A. D. Mednykh
Article
  • 49 Downloads

Keywords

Hyperbolic Space Isometry Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    F. Löbell, “Beispiele geschlossener dreidimensionaler Clifford-Kleinscher Räume negative Krümmung,” Ber. Sächs. Akad. Wiss. Leipzig,83, 167–174 (1931).Google Scholar
  2. 2.
    H. Seifert and C. Weber, “Die beiden Dodekaederräume,” Math. Z.,37, 237–253 (1933).Google Scholar
  3. 3.
    W. Thurston, The Geometry and Topology of 3-Manifolds, Princeton Univ. Lecture Notes (1978).Google Scholar
  4. 4.
    W. Magnus, “Untersuchungen über einige unendliche discontinuierliche Gruppen,” Math. Ann.,105, 52–74 (1931).Google Scholar
  5. 5.
    R. Riley, “An elliptical path from parabolic representations to hyperbolic structures,” in: Topology of Low Dimensional Manifolds, Lecture Notes in Math.,722, 99–133 (1979).Google Scholar
  6. 6.
    A. D. Mednykh, “Automorphism groups of three-dimensional hyperbolic manifolds,” Dokl. Akad. Nauk SSSR,285, No. 1, 41–46 (1985).Google Scholar
  7. 7.
    A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, Berlin-New York (1983).Google Scholar
  8. 8.
    F. Lanner, “On complexes with transitive groups of automorphisms,” Commun. Sem. Math. Univ. Lund,11, 1–71 (1950).Google Scholar
  9. 9.
    L. A. Best, “On torsion free discrete subgrups of PSL(2, c) with compact orbit space,” Can. J. Math.,23, 451–460 (1971).Google Scholar
  10. 10.
    É. B. Vinberg, “Some examples of crystallographic groups in Lobachevskii spaces,” Mat. Sb.,78, 633–639 (1969).Google Scholar
  11. 11.
    W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Interscience, New York-London-Sydney (1966).Google Scholar
  12. 12.
    H. S. M. Coxeter, Introduction to Geometry, Wiley, New York-London (1961).Google Scholar
  13. 13.
    L. Greenberg, “Finiteness theorem for Fuchsian and Kleinian groups,” in: Discrete Groups and Automorphic Functions, Academic Press, London-New York (1977), pp. 199–257.Google Scholar
  14. 14.
    M. E. Voronenko, “On the action of the isometry group of a three-dimensional hyperbolic manifold on the first homology group,” Proc. 18th All-Union Algebra Conference, Kishinev (1985), Part I, p. 100.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. D. Mednykh

There are no affiliations available

Personalised recommendations